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1 Introduction

With the widespread adoption of computer-based testing, researchers now have access to
increasingly rich data sources. Among these, response time has become one of the most
commonly collected measures.

Response time offers a valuable, complementary window into examinees’ cognitive pro-
cesses, providing a fine-grained view of problem solving that accuracy alone cannot capture
(Van der Linden, 2006). Such timing information has proven useful in several ways. First,
researchers have used response time to improve the precision of ability estimates. By borrow-
ing information from response latencies, joint models achieve higher accuracy in measuring
examinee proficiency than models based solely on correctness (Bolsinova and Tijmstra, 2018;
De Boeck and Jeon, 2019). Moreover, in time-limited, high-stakes assessments, such as pilot
certification exams and medical licensure tests, examinees must demonstrate both correct-
ness and speed under pressure (Maris and Van der Maas, 2012). Jointly analyzing response
accuracy and response time therefore helps to identify candidates who satisfy both perfor-
mance and timing requirements. Second, response time can serve as a diagnostic tool for
data quality by detecting aberrant response behaviors that accuracy data alone would miss.
For example, in low-stakes testing environments some examinees engage in rapid guessing,
producing response patterns characterized by very short latencies and low correctness rates
(Cheng and Shao, 2022). Because low-proficiency examinees may also yield low accuracy, re-
sponse times are essential for distinguishing random guessing from genuine attempts, thereby
protecting the validity of the assessment. These studies underscore the power and growing
prevalence of join analysis using both response time and response accuracy. As a result,
joint modeling of response time and accuracy has grown explosively in recent years (Fox and
Marianti, 2016; Guo et al., 2022; Wang et al., 2018).

Among the various approaches, the two-level hierarchical joint model introduced by
Van der Linden (2007) is one of the most widely used frameworks. It is popular for its
flexible, “plug-and-play” design: at the first level, researchers are relatively free for the
choices of response accuracy and response time models, and at the second level, person
and item latent parameters are modeled jointly. This elegant two-tier structure effectively
captures dependencies between accuracy and time, making it an appealing choice for both
methodological research and applied assessment contexts.

Despite its widespread use, estimating the hierarchical joint model remains challenging
due to its inherent complexity and heterogeneous curvature. Specifically, the two-level struc-
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ture is conceptually straightforward but yields a large parameter space. For a combination of
a 2-parameter item response theory model for accuracy and a log-normal model for response
time, one must estimate: Level 1: 2×N+2×J+2×J parameters (N person-level speed and
ability; J item-level discrimination, difficulty, time-intensity, and time-variance) and Level
2: 2 + 4+ 10 hyperparameters (means, variances, and covariances among person and item).
Moreover, the information contributed by each response is uneven across parameters, leading
to heterogeneous curvature in the joint likelihood surface. Some parameters are informed
primarily by accuracy data, while others rely on timing information. Such imbalance pro-
duces highly irregular likelihood landscapes. Currently, only the Markov chain Monte Carlo
(MCMC) approach is available for the hierarchical join model, typically via Gibbs sampling,
which iteratively draws from the full joint posterior distribution. MCMC’s strength lies in its
ability to accommodate complex dependencies and high-dimensional parameter spaces while
providing full posterior summaries (Gelman & Rubin, 1992; Liu, 2008). However, it suffers
from slow mixing and long run times as dimensionality grows, and requires careful tuning
of sampling schemes and convergence diagnostics. These drawbacks motivate the search for
alternative methods.

The Adaptive Moment Estimation (ADAM) algorithm presents a promising approach to
overcoming the estimation challenges of hierarchical joint models. Originally introduced by
Kingma and Ba (2014), ADAM has become a standard optimizer within popular machine-
learning frameworks such as TensorFlow and PyTorch (Paszke, 2019). Its key innovation
lies in adaptively scaling the learning rate for each parameter according to the history of
past updates, thereby preventing excessive adjustments in regions of high curvature. By
maintaining first and second moment estimates of the gradients, ADAM leverages historical
direction information to produce more informed and stable parameter updates. Additionally,
ADAM has demonstrated robust performance even on non-convex loss surfaces.

Building on these strengths, this project develops an ADAM-based estimation pipeline
tailored to the hierarchical joint model. The following sections first review the specification
of the hierarchical joint model. We then describe the implementation of ADAM within this
context. A simulation study follows, comparing ADAM’s efficiency and estimation accuracy
against traditional MCMC approaches. Then conclude with a discussion of the findings and
limitations.

2 The Hierarchical Framework

2.1 Model specification

The hierarchical framework uses a two-level structure to jointly model the response accuracy
and response time.

Response accuracy (level 1). Following the two-parameter item response theory
model, the response accuracy Yij of examinee i ∈ {1, . . . , N} on item j ∈ {1, . . . , J} can be
determined as:

Yij ∼ f(yij; θi, aj, bj), (1)
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with the Bernoulli distribution f(yij; θi, aj, bj). Then, the probability of giving a correct
answer as:

P (Yij = 1) =
1

1 + exp[−aj(θi − bj)]
, (2)

where θi is the ability of examinee i; bj is the item difficulty parameter of item j, while aj is
the discrimination parameter.

Response time (level 1). Using the log-normal theory of response time, the response
time Tij is defined as:

Tij ∼ f(tij; τi, βj, αj), (3)

with the log normal density function as:

f(tij; τi, βj, αj) =
αj

tij
√
2π

exp

{
−1

2
[αj(ln tij − (βj − τi))]

2

}
, (4)

where βj is the time density parameter for item j, representing the averaged time required
for solving the item, and αj is the time discriminating parameter. τi is the latent speed of
person i.

Multivariate normal distribution (level 2). Combining two first-level models, we
can have the person parameter vector as ξi = (θi, τi), and the item parameter vector as
ψj = (aj, bj, βj, αj). ξi follows a multivariate normal distribution as:

ξi ∼ f(ξi;µP ,ΣP), (5)

with the density function as:

f(ξi;µP ,ΣP) =
|Σ−1

P |1/2

2π
exp

[
−1

2
(ξi − µP)

⊤ Σ−1
P (ξi − µP)

]
, (6)

where the µP = (µθ, µτ ) is the mean vector, and ΣP = [(σ2
θ , στθ)

⊤, (σθτ , σ
2
τ )

⊤] is the covari-
ance matrix. For the identification purpose, we have constraints as µP = (µθ, µτ ) = (0, 0),
and σ2

θ = 1.
Similarly, we have ψj ∼ f(ψj;µI ,ΣI) with the density function as:

f(ψj;µI ,ΣI) =
|Σ−1

I |1/2

(2π)2
exp

[
−1

2

(
ψj − µI

)⊤
Σ−1

I
(
ψj − µI

)]
, (7)

where the µI = (µa, µb, µβ, µα) is the mean vector, and ΣI is the covariance matrix being
defined as:

ΣI =


σ2
a σab σaβ σaα

σba σ2
b σbβ σbα

σβa σβb σ2
β σβα

σαa σαb σαβ σ2
α

 .

Hence, the likelihood function can be written as:
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L =
J∏

j=1

N∏
i=1

f(yij; θi, aj, bj)f(tij; τi, βj, αj)f(ξi;µP ,ΣP)f(ψj;µI ,ΣI). (8)

Then, defining P (Yij = 1) = πij, ln tij − (βj − τi) = rij, Σ
−1
P = ΩP , and Σ−1

I = ΩI , we
can have the log-likelihood function as:

ℓ =
J∑

j=1

N∑
i=1

[
log f(yij; θi, aj, bj) + log f(tij; τi, βj, αj) + log f(ξi;µP ,ΣP) + log f(ψj;µI ,ΣI)

]
=

J∑
j=1

N∑
i=1

[yij log πij + (1− yij) log(1− πij)] (9)

+
J∑

j=1

N∑
i=1

[
logαj − log tij −

1

2
log(2π)− 1

2
(αjrij)

2

]
(10)

+
N∑
i=1

[
1

2
log |ΩP | − log(2π)− 1

2
(ξi − µP)

⊤ΩP (ξi − µP)

]
(11)

+
J∑

j=1

[
1

2
log |ΩI | − 2 log(2π)− 1

2

(
ψj − µI

)⊤
ΩI
(
ψj − µI

)]
. (12)

3 The Adaptive Moment Estimation

The core idea of the Adaptive Moment (ADAM) algorithm is to use the first moment of
the gradient as momentum to track the average direction of past gradients, and the second
moment to adapt the learning rate based on the magnitude of historical gradients. This
design accelerates convergence, helps avoid getting stuck in flat regions, and provides an
adaptive step size that adjusts according to the frequency of updates for each parameter.

3.1 The gradient of each parameter

To realize the ADAM algorithm, the first step is to obtain the gradient of each parameter.
Considering the ith examinee, for the person parameters, based on Equations 9 and 11,

and Equations 10 and 11, we can have:

∂ℓ

∂θi
=

J∑
j=1

aj(yij − πij)− [ΩP(ξi − µP)]1 =
J∑

j=1

aj(yij − πij)− [ΩPξi]1 , (13)

∂ℓ

∂τi
= −

J∑
j=1

α2
jrij − [ΩP(ξi − µP)]2 = −

J∑
j=1

α2
jrij − [ΩPξi]2 (14)

where [·]p represents the pth element in the vector. Similarly, considering the jth item, based
on Equations 9 and 12, and Equations 10 and 12, we can have:
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∂ℓ

∂aj
=

N∑
i=1

(θi − bj)(yij − πij)−
[
ΩI(ψj − µI)

]
1
, (15)

∂ℓ

∂bj
= −

N∑
i=1

aj(yij − πij)−
[
ΩI(ψj − µI)

]
2
, (16)

∂ℓ

∂βj

=
N∑
i=1

α2
jrij −

[
ΩI(ψj − µI)

]
3
, (17)

∂ℓ

∂αj

=
N∑
i=1

(
1

αj

− αjr
2
ij

)
−
[
ΩI(ψj − µI)

]
4
. (18)

Further, to ensure the identifiability of the item response model and the positive property
of aj and αj, the optimization process for these two parameters focuses on the log scale. Then,
we have the gradient defined as:

∂ℓ

∂ log aj
=

∂ℓ

∂aj

∂aj
∂ log aj

= aj
∂ℓ

∂aj
, (19)

∂ℓ

∂ logαj

=
∂ℓ

∂αj

∂αj

∂ logαj

= αj
∂ℓ

∂αj

. (20)

For the second level parameters, we can have:

∂ℓ

∂µI
= ΩI

J∑
j=1

(ψj − µI), (21)

∂ℓ

∂ΣP
=

1

2

[
ΩP

(
N∑
i=1

(ξiξ
⊤
i )−NΣP

)
ΩP

]
, (22)

∂ℓ

∂ΣI
=

1

2

[
ΩI

(
J∑

j=1

(ψj − µI)(ψj − µI)
⊤ − JΣI

)
ΩI

]
. (23)

In terms of the person and item covariance matrices, the Cholesky factorization is em-
ployed to ensure the symmetric positive definite property, that is, Σ = LL⊤. L is a real
lower triangular matrix Llow with positive diagonal entries Ldiag. Then, the gradients of the
person and item L matrices are as follows:

∂ΣP

∂LP
= 2

∂ℓ

∂ΣP
LP , (24)

∂ΣI

∂LI
= 2

∂ℓ

∂ΣI
LI . (25)
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Similarly, to ensure the positive property of the variance, the log scale of the diagonal
elements are computed. For the item diagonal elements, we can have:

∂ΣI

∂ logLI diag

=
∂ΣI

∂LI diag

∂LI diag

∂ logLI diag

= diag

(
∂ℓ

∂ΣI

)
LI diag. (26)

The computation of the person variance follows the same logic.

3.2 The ADAM algorithm

After having the gradients, the estimation with ADAM can be straightforward. Let X =
(θ, τ , loga, b,β, logα,µI , LP low, logLP diag, LI low, logLI diag) represents the vector of all
the parameters of interest. Then, the corresponding gradient vector is denoted as ∇f(x).
The update rule of the parameters at kth iterate is as follows:

xk+1 = xk − η(z̃k ⊙ vk), (27)

where ⊙ is the Hadamard product; η is a fixed step size. z̃k is the adaptive term that carries
previous history of the gradient with the pth element being defined as:

z̃k(p) = 1/
√
zk(p),

zk = pmax (zk−1, w1zk−1 +∇f(xk)⊙∇f(xk)). (28)

Here, w1 ∈ (0, 1) is the weighting parameter. The pmax(·) function provides the maxi-
mum values of a vector. Further, we have the momentum term vk being defined as:

vk = w2vk−1 + (1− w2)∇f(xk), (29)

where w2 ∈ (0, w1) is the weighting parameter for the momentum.

4 Simulation

The simulation study aims to evaluate the parameter recovery and computation efficiency
of the ADAM fashion estimation process. The traditional MCMC approach is used as the
baseline.

4.1 Method

Based on specifications from widely administered computerized licensure and certification
examinations, the simulation study examines two test-length conditions: 60 and 80 items.
For medical assessment, we reference the Next Generation NCLEX-RN, which delivers be-
tween 85 and 150 items per exam (Ignatavicius, 2021). In the realm of pilot certification,
the Federal Aviation Administration’s Airman Knowledge Testing Matrix specifies a 60-item
exam for the Airline Transport Pilot Multiengine Airplane Canadian conversion and an 80-
item Flight Navigator knowledge test (Administration, 2023). Two levels of sample size are
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considered: 3,000 and 5,000. By mirroring the real-world conditions, the design ensures that
the evaluation of the ADAM estimation pipeline reflects practical testing environments.

The hierarchical join model was used for data generation. The setting of parameters
followed the reported estimates in Van der Linden (2007). Specifically, for the person pa-
rameters, σθ,τ = 0.3 and σ2

τ = 0.6. The θ and τ parameters follow the multivariate normal
distribution with the mean vector as µP = (0, 0). For the item parameters, the covari-
ance vector was set as (σb,a, σβ,a, σβ,b, σα,a, σα,b, σα,β) = (0,−0.11, 0.30, 0, 0.23, 0.18). The
variance vector was set as (σ2

a, σ
2
b , σ

2
β, σ

2
α) = (0.16, 0.5, 1, 0.20). The a, b,β,α item param-

eters were simulated from the multivariate normal distribution with the mean vector as
µI = (1, 0, log(55), 0.7).

The MCMC approach served as the baseline. We adopted the prior distributions rec-
ommended by Van der Linden (2007) and implemented the model in the nimble R package
(de Valpine et al., 2017), which compiles user-specified models to C++ for enhanced per-
formance. Three independent Markov chains were run for 10,000 iterations each, discarding
the first 5,000 as burn-in and applying a thinning interval of five to reduce autocorrelation.
The ADAM estimation algorithm was coded in R, using entirely user-defined functions. The
stopping rule was designed as the sum of absolute change in the parameter vector between
successive iterations falling below a prespecified tolerance (here, 1e− 6). The step size was
set as 0.01, and w1 = 0.95, w2 = 0.9.

To evaluate performance, we recorded the running time as a measure of computational
efficiency, and we compared bias and root mean square error (RMSE) for each parameter
under both estimation methods.

4.2 Results

The running time for both MCMC and ADAM estimation methods are summarized in Table
1. It shows that the ADAM estimator completes parameter estimation in over ten times less
than the MCMC approach, indicating a marked gain in computational efficiency.

Table 1: The running time in minutes of MCMC and ADAM estimations.
N J MCMC ADAM

3000 60 111.85 11.67
80 191.77 15.68

5000 60 172.47 14.81
80 274.75 16.99

Figures 1 and 2 display the bias and RMSE for first-level person and item parameters.
Only first-level parameters are presented, as they serve as a baseline estimate, that is, if these
are inaccurate, second-level estimates are unlikely to be reliable. For the discrimination (a),
difficulty (b), and time-intensity (β) parameters, ADAM consistently outperforms MCMC,
as evidenced by its lower bias and RMSE. In contrast, MCMC yields more accurate estimates
for the time-variance (α) parameter. Estimates of person parameters show similar accuracy
between the two methods. Although the bias of θ estimated by ADAM is larger than MCMC
under the N = 5000, J = 80 condition, it is still acceptable. The RMSE of θ estimated by
MCMC is higher at N = 5000, J = 60, but it is within acceptable bounds.
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Figure 1: The bias of each first level parameter across conditions.
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Figure 2: The RMSE of each first level parameter across conditions.
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5 Discussion

The incorporation of response time into assessment models provides substantial insights into
examinees’ problem-solving processes and has driven a marked shift toward jointly modeling
response accuracy and latency (De Boeck and Jeon, 2019; Van der Linden, 2006). Among the
available approaches, the two-level hierarchical joint model stands out for its straightforward,
intuitive design. Despite its appeal, parameter estimation for this model remains challenging:
the estimation depends totally on MCMC, which can demand extensive computation time
and may encounter convergence difficulties when applied to large-scale data. To address these
issues, our project proposes an ADAM-based optimization algorithm specifically adapted to
the hierarchical joint framework. Simulation study reveals that the ADAM estimator has over
ten times efficiency higher than MCMC while achieving comparable accuracy in parameter
recovery.

This project demonstrates the promising potential of applying the ADAM algorithm to
estimate complex latent variable models. However, several important considerations remain.
First, while ADAM offers faster computation and comparable accuracy, it should not be
viewed as a complete replacement for MCMC. MCMC not only provides point estimates
but also yields full posterior distributions, which can be valuable in many contexts. Future
work is needed to develop methods for deriving standard errors within the ADAM framework.
Second, the current implementation of ADAM constrains all discrimination parameters to be
positive. In practice, however, negative discrimination estimates do occur and can indicate
issues with item quality. In a pilot attempt to relax this constraint by fixing only item
1’s discrimination parameter to 1, estimation accuracy remained unsatisfactory. Third, this
study focuses on large-scale applications. It remains unclear how ADAM performs under
conditions of small sample sizes or limited test lengths, which warrants further investigation.
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