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1 Introduction

Cognitive diagnostic testing (CDT) aims to provide students with feedback reflecting their

mastery of each skill or knowledge (de la Torre & Douglas, 2004; de la Torre, 2011). Such

information is not only effective for students’ learning and development but powerful for the

improvement of teaching design. Given that students’ test performance will not directly hurt

their grades and students will have no consequence for poor performances, CDT is a typical

low-stake testing scenario. Compared to high-stake testing, students tend to display lower

test-taking motivation and a more significant proportion of disengaged responses, such as

rapid guessing and omission behavior (Ulitzsch, Shin, & Lüdtke, 2023; Wise & Gao, 2017).

Students may make no attempt to activate their knowledge in answering the test items,

but rather randomly select an answer or even skip the items (Ulitzsch, von Davier, & Pohl,

2020; Zhu, Arthur, & Chang, 2022). This phenomenon undermines the validity of CDT.

If observed responses contain no information about the problem-solving process, educators
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can never achieve precise estimates of students’ latent knowledge profiles. For instance, if

a student has mastered a knowledge attribute but answers the item incorrectly due to low

test-taking motivation, educators may misclassify the student into the non-mastery group

and conclude that this student requires further study. Additionally, when implementing the

pre-test for item calibration, low-quality response data would impair the estimation of the

Q-matrix in CDT (Hsu, Jin, & Chiu, 2020).

To detect disengaged responses, researchers have proposed various models to capture

rapid guessing and omission behaviors (Lu, Wang, & Shi, 2023; Ulitzsch et al., 2020). The

principle for these models is to construct different model structures for the disengaged be-

haviors and normal behaviors (Hsu et al., 2020; Lu, Wang, & Shi, 2021; C. Wang & Xu,

2015). However, most models were developed under the item response theory (IRT) and

little attention was paid to the CDT. A classic IRT model for disengaged response detection

is the hierarchical mixture model proposed by C. Wang and Xu (2015). A higher-order latent

discrete variable was defined to represent whether a specific response should be labeled as

rapid guessing. Further, Ulitzsch et al. (2020) considered both rapid guessing and omission

behaviors by redesigning the higher-order latent variable with a continuous latent trait rep-

resenting the engagement tendency of a student. These approaches are built with IRT and

leverage the hierarchical modeling framework. This hierarchical structure enables researchers

to jointly model the response accuracy and response time with a multivariable distribution

in the second layer, but it also constrains the model into continuous variables which leads to

the limited model development in CDT. Considering that the attribute profiles in CDT are

discrete, it is hard to integrate the cognitive diagnostic models (CDMs) into the multivari-

able distribution. To the best of our knowledge, only Hsu et al. (2020) extended the mixture

model proposed by C. Wang and Xu (2015) into the CDT scenario. The higher-order CDM

was used to estimate a general continuous latent trait for attribute patterns. However, this

approach would considerably increase the number of parameters needed to be estimated and

bring computational issues. To reduce the computational burden, Hsu et al. (2020) focused
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only on rapid guessing detection.

In this paper, we formulate a new motivation-based cognitive diagnostic model (MCDM),

leveraging multiple-level attributes instead of the hierarchical structure to connect students’

test-taking motivation and latent profiles. We further put forward a plug-and-play modeling

framework that enables developers to deal with both rapid guessing and omission and to

differentiate two kinds of omission behavior (i.e., failing to generate an answer or intentionally

skipping). In the following sections, the traditional CDMs will be described. Next, the new

MCDM model is introduced followed by the simulation and application studies. Finally, a

discussion of suggestions provided for practitioners and future directions are presented.

2 Traditional Cognitive Diagnostic Models

CDMs can offer information about how well a student masters a specific knowledge or skill.

The validity of such inference relies heavily on the assumption that students actively engage

in the test and thus manage to trigger their knowledge to solve the items (Rupp et al., 2010).

In other words, it is assumed that students possess high test-taking motivation during the

problem-solving process. Hence, the probability of giving a correct answer to the item is

purely contributed by students’ knowledge profiles and item parameters. Specifically, CDMs

assume that students can answer an item correctly only when they master or partially master

all knowledge attributes measured by the item. Let K denote the number of attributes

involved in a test with J items. To establish the relationship between attributes and items,

a J × K Q-matrix specifying the attributes needed for each item is calibrated by domain

experts. The jth row of the Q-matrix, qj = (qj1, qj2, . . . , qjK)
′, indicates the attribute vector

measured by item j with qjk = 1 if mastering attribute k is necessary to correctly answer

item j and qjk = 0 otherwise. The knowledge profiles of student i(i = 1, 2, . . . , N) can be

represented as αi = (αi1, αi2, . . . , αiK)
′ and αik = 1 signifies the mastery of the kth attribute

and 0 otherwise.
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CDMs can be categorized into non-compensatory and compensatory models based on

whether the mastery of all attributes measured by the item is required for a correct response.

Non-compensatory models, such as the deterministic inputs, noisy “and” gate model (DINA)

(Junker & Sijtsma, 2016) and the noisy inputs, deterministic “and” gate model (NIDA) (de la

Torre & Douglas, 2004), assume that only when mastering all the attributes involved in an

item can the student answer the item correctly. For compensatory models, such as the

deterministic inputs, noisy “or” gate model (DINO) (Templin & Henson, 2006), only partial

mastery of the attributes is required (von Davier & Lee, 2019). Note that non-compensatory

models are nested within the compensatory models, as only the joint effect of all attributes

is considered in non-compensatory models. To provide a coherent line for various CDMs,

generalized frameworks like generalized DINA (G-DINA) (de la Torre, 2011) and log-linear

CDM (Henson, Templin, & Willse, 2009) have been developed, which hold the properties of

compensatory models. Next, DINA, DINO, and G-DINA are introduced as classic models

for non-compensatory, compensatory, and generalized models, respectively.

2.1 Non-compensatory Models

DINA is a typical example of non-compensatory models, restricting that a success response

on an item requires the mastery of all attributes measured. The latent response for student

i on item j is defined as ηDINA
ij =

∏K
k=1 α

qjk
ik , that is, if the student possesses all attributes

needed for the item j,ηDINA
ij = 1; otherwise, ηDINA

ij = 0. In reality, even students mastering

all attributes may answer incorrectly due to slipping, while those who have not mastered all

attributes could provide a correct response by guessing. Hence, slipping (sj) and guessing

(gj) parameters are included in the model and defined as sj = P (Yij = 0|ηDINA
ij = 1) and

gj = (Yij = 1|ηDINA
ij = 0). The probability of student i correctly answering item j is expressed

as:

P (Yij = 1|αi) = (1− sj)
ηDINA
ij g

(1−ηDINA
ij )

j . (1)
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2.2 Compensatory Models

Differing from DINA, DINO posits that the mastery of at least one attribute measured by

the item is adequate for providing a correct response. Hence, the latent response for the

student i on the item j is redefined as ηDINO
ij = 1−

∏K
k=1(1−αik)

qjk , meaning that ηDINO
ij = 1

when at least one attribute needed for the item is mastered. Similar to DINA, the slipping

and guessing parameters are incorporated and defined as sj = P (Yij = 0|ηDINO
ij = 1) and

gj = (Yij = 1|ηDINO
ij = 0). Accordingly, the probability of giving a correct answer by the

student i on the item j is formulated as:

P (Yij = 1|αi) = (1− sj)
ηDINO
ij g

(1−ηDINO
ij )

j . (2)

To provide a unified framework for different CDMs, the G-DINA model was developed,

modeling the correct probability with main effects and interaction effects. Specifically, under

the identity link, the correct probability of student i on item j is:

P (Yij = 1|α∗
ij) = δj0 +

K∗
j∑

k=1

δjkαik +

K∗
j∑

k′=k+1

K∗
j −1∑
k=1

δjkk′αikαik′ + ...+ δj12,...,K∗
j

K∗
j∏

k=1

αijk, (3)

where K∗
j =

∑K
k=1 qjk represents the number of attributes measured by item j (K∗

j < K).

α∗
ij is the reduced attribute profile for item j. δj0 is the intercept, indicating the correct

probability when students mastering no knowledge; δjk denotes the main effect of attribute k,

representing the influence of mastering attribute k on the probability of answering correctly;

δjkk′ denotes the interaction between attributes k and k′, and δj12,...,K∗
j
represents the inter-

action among all K∗
j attributes. Notice that in G-DINA, the interaction effects of different

attributes affect the probability of answering correctly, thus belonging to the compensatory

model along with DINO.
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3 Motivation-based Cognitive Diagnostic Model

Assuming that students actively engage in answering the test items, CDMs decipher stu-

dents’ latent knowledge profiles with their observed responses (de la Torre, 2011). Ideally,

when answering an item, students with high test-taking motivation intend to activate the

attribute(s) measured by the item and try their best to solve the problem. In this situation,

we can safely conclude that the responses and response times generated by students contain

reliable information about students’ attribute profiles. Hence, our inference for the attributes

involved in the item is reliable and valid. In contrast, students with low test-taking motiva-

tion may invest no effort in answering the item, rapidly guessing an answer or even skipping

the item. Therefore, the responses and response times reflect no information on students’

mastery of the attributes measured by the item. For instance, in a non-graded classroom

arithmetic exam, the examinee with low test engagement may randomly select an option as

the answer or skip the item. In this case, the inference for the attribute(s) involved in the

item contains noises from the disengaged responses.

It is clear that valid inference for students’ knowledge profiles is contingent on high-quality

evidence (e.g., response accuracy and response time) and the active statuses of students’

attribute profiles mirror their test-taking motivation levels. If a low-motivative student

does not attempt to activate the attribute(s) measured by the item while answering, the

conclusion about whether this student masters the attribute(s) or not becomes doubtful.

Based on this principle, this study proposed a motivation-based CDM (MCDM) to detect

disengaged responses by labeling the problematic attribute(s) in the problem-solving process.

With MCDM, we can pinpoint the specific attribute(s) affected by disengaged responses and

refine the inference of students’ knowledge profiles, enhancing the quality of decision-making.
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3.1 Model Specification

To detect disengaged responses, MCDM employs the idea of multiple-level attributes to

connect students’ test-taking motivation and latent profiles. To be more specific, when a

student masters the attribute(s) measured by the item and actively engages in answering the

item, the students’ performance reflects their peak level; when a student does not master the

attribute(s) involved in the item but makes a best effort to solve the item, the performance

in this situation should be inferior to the peak. Lastly, the student’s performance will reach

its lowest level when the student disengages in answering the item. Therefore, instead of

using a dichotomous variable to indicate students’ mastery of attributes, the knowledge

status for attribute k of student i is defined as: (1) αik = 1 when the student masters the

attribute k and actively leverage the knowledge to solve the item (i.e., mastery); (2) αik = 0

when the student does not master the attribute k but still endeavors to solve the item (i.e.,

non-mastery); (3) αik = −1 when the student invests no efforts in answering the item and

thus shows disengaged responses (i.e., non-active). Under this definition, we can further

develop response accuracy, response time, and omission models for the normal behavior and

disengaged behavior.

3.1.1 Response accuracy model

To classify the normal and disengaged responses, similar to DINA, the latent response ηij

can be defined as:

ηij = I

(
K∑
k=1

α
qjk
ik =

K∑
k=1

qjk

)
− I

(
K∑
k=1

α
qjk
ik <

K∑
k=1

|αik|qjk
)
. (4)

Here, I(·) is an indicator function, taking the value of 1, when a condition is satisfied

and 0 otherwise. Thus, when examinee i activates and masters all attribute(s) assessed

by item j, ηij equals 1; when examinee i activates but does not master all the attributes

measured by item j, ηij equals 0. Whereas, when examinee i does not activate one of the
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attributes involved in item j, that is, there exists a qik = 1 but αik = −1, ηij = −1. The

first two scenarios are considered normal responses, while the last case is identified as a

disengaged response. To illustrate this definition, a bare-bones example of Test A measuring

five attributes was presented. Suppose the item j in this test assesses three attributes, and

there are five examinees with different knowledge profiles. The latent response ηij of all

students can be computed for each item (see Table 1).

Table 1: Example of normal and disengaged behaviors.

qj = [10110]
Normal behavior η1j = 1 α1 = [10111]

η2j = 0 α2 = [10000]
Disengaged behavior η3j = −1 α3 = [−10110]

η4j = −1 α4 = [−10000]
η5j = −1 α5 = [−10− 1− 10]

The probability of giving a correct answer on item j for a student i with knowledge status

αi can be formulated as:

P (Yij = 1|αi) =


1− sj if ηij = 1,

g1j if ηij = 0,

g2j if ηij = −1,

(5)

where sj represents the slipping parameter, indicating the probability that a student who

masters and activates all attributes required by item j answers the item incorrectly due to slip

and mistake (when using the identity link, sj = δj0+δj12,...,K∗
j
); g1j is the guessing parameter

for engaged responses, indicating the probability of a student, who has activated all attributes

measured by the item but not fully mastered all of them, guessing correctly on the item

(g1j = δj0 for the identity link); g2j denotes the guessing parameter for disengaged responses,

indicating the correct response probability for a student who has not activated all attributes

required by the item. Furthermore, following the monotonic increasing assumption, that

is, as the level of knowledge attributes increases, the student has a higher probability of
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answering the item correctly, we can have: 0 < g2j < g1j < 1− sj < 1.

3.1.2 Response time model

One main component of disengaged responses is the rapid guessing behavior. To label the

rapid guessing response, students’ response time spent on answering an item is a crucial

indicator. As can be seen in Figure 1, the response time distribution shows a clear bimodal

pattern, suggesting different means and variances exist in the response time distribution.

Therefore, this study models response times separately for engaged and disengaged responses.

The response time distribution for engaged responses follows a log-normal distribution,

determined by the time intensity parameter βM , the speed τ of the student, and response

time variance σ2
M . Additionally, based on the common-guessing theory (Schnipke & Scrams,

1997), disengaged responses contain no information about students’ knowledge profiles and

response speed. Consequently, the response time distribution for disengaged responses fol-

lows common item time intensity parameters (βD) and variance (σ2
D). The response time t

for student i on item j is as follows:

ln(tij) ∼


N(βMj − τi, σ

2
Mj) if ηij = 0 or 1,

N(βD, σ
2
D) if ηij = −1.

(6)

The main difference between engaged and disengaged responses is the underlying problem-

solving process. The gap between engaged and disengaged responses reflects the student’s

encoding and cognitive processing efforts to solve the item (Y. Chen, Yang, & Lee, 2022).

Compared to disengaged responses, students with high test-taking motivation spend more

time on reading, understanding, and activating relevant knowledge to answer the item-what

we refer to as the wake-up phrase (Ulitzsch et al., 2020; Wise & Gao, 2017). Thus, we

define β∗
j to represent the wake-up time required for actively answering item j, resulting in

βMj = β∗
j + βD where β∗

j ≥ 0.

In this model, the effect of knowledge profiles on response time is embedded in ηij.
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Equation 6 can be expressed in a mixture modeling fashion as: ln(tij|ηij) = [1 − P (ηij =

−1)]f(tMij )+P (ηij = −1)h(tDij ) where f(·) represents the response time function for engaged

responses, and h(·) represents the response time function for disengaged responses.

Figure 1: Response time distribution in log-scale for three items of the PISA 2015 math
assessment (0 = incorrect response; 1 = correct response; 9 = missing).

3.1.3 Omission model

Another important indicator of disengaged response detection is the omission behavior. The

challenge in modeling omission behavior lies in its dual nature. That is, omission may exist

in both normal and disengaged responses. The question will be: How can we distinguish

two types of omission in the model? Existing models for omission primarily employ a regres-

sion fashion, predicting students’ omitted responses based on students’ abilities and speeds

(Ulitzsch et al., 2020). This approach is straightforward and intuitive, allowing researchers

to clearly understand the contribution of different factors by analyzing the coefficients. How-

ever, the selection of predictors implies assumptions of the underlying mechanism of omission

behavior. Specifically, building an omission model with students’ abilities and speeds as-

sumes that students’ knowledge statuses and speed are the two biggest factors that account

for omission. Models relying on strong assumptions inevitably encounter model-fitting issues

such as missing key variables.

Differing from the regression approach, we leverage the multi-level attribute to construct
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the latent response ηij and separate two types of omission responses without making assump-

tions on the model predictors. The probability of student i omitting item j is formulated

as:

P (Oij = 1) = (1− rj)
{1−I(ηij=−1)}o

I(ηij=−1)
j , (7)

where rj is the responding parameter, indicating the probability of a student with high

test-taking motivation giving a response on the item; oj denotes the omitting parameter,

representing the probability of a student with low test-taking motivation leaving the item

blank. I(·) is an indicator function, which has a value of 1 when ηij = −1, and a value

of 0 otherwise. To ensure that disengagement will introduce a higher omission rate than

engaged problem-solving behavior, the constraint of 0 < 1 − rj < oj < 1 is imposed.

Note that in Equation 7, no assumptions of predictors are made, so it is flexible to embrace

potential factors in the model by including covariates to build relationships between variables

of interest and the rj and oj parameters.

3.2 Model Summary

MCDM identifies the disengaged responses by defining the active latent response ηij = 0/1

and the resting (non-active) latent response ηij = −1. The novel model allows for an

understanding of how examinees extract various knowledge attributes during the exam and

captures the potentially unreliable attribute. In the current study, MCDM is built upon the

response accuracy, response time, and omission. Within this framework, it is straightforward

for researchers to further expand or simplify the current model by adding or canceling data

components. Additionally, compared to traditional CDMs with multi-attributes (J. Chen &

de la Torre, 2013; Ma & Torre, 2016), the attribute level in MCDM has a unique function of

disengaged response detection. Below, we offer a detailed discussion of MCDM in terms of

model variation and connection with multi-attribute CDMs, aiming to provide readers with
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a comprehensive summary of MCDM.

3.2.1 Model variation

The current model framework incorporates both rapid guessing and omissions as indicators

of disengaged responses. It is plausible to jointly model these two behaviors, considering

that, in the typical testing scenario, full control is given to the test-taker, meaning that

examinees can decide whether to answer the presented item or leave it blank. Further, as

both the response time and omission model can be viewed in a mixture modeling framework

that enjoys a “plug-and-play” nature, researchers can easily remove the unnecessary parts

according to their specific research purposes. For example, if the testing procedure forces

examinees to answer the current item before moving to the next one, researchers can cancel

the omission model from MCDM. In our simulation and empirical study, we investigated the

recovery of parameters under the 0% omission condition and fit the reduced model with real

data. In addition, it is also promising to expand the model by incorporating more indicators,

such as eye-tracking data, to gain a deeper understanding of the problem-solving process.

3.2.2 Connection with multi-attribute CDMs

MCDM utilizes a multi-level attribute framework to depict students’ test-taking engage-

ment. The key distinction between this model and existing attributes-based multi-level CDM

(J. Chen & de la Torre, 2013) lies in the model objective: While multi-level CDM aims to

analyze the variation in the mastery status of students’ knowledge attributes, MCDM focuses

on identifying the specific attribute(s) affected by disengaged responses.

By employing the design of multi-level attributes, researchers utilize various types of data

to explore traits of interest. For instance, S. Wang and Chen (2020) and Su and Davison

(2019) defined students’ knowledge attribute states or abilities into 0, 1, and 2 levels, with

high accuracy and speed associated with the highest proficiency level, identifying students

who can answer questions quickly and accurately. Similarly, this study utilizes multi-level
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attributes to detect the rapid guessing and omission behavior, thereby delving deeper into

students’ test-taking motivation.

3.3 Estimation Procedure

MCDM is estimated with the Markov chain Monte Carlo (MCMC) method under the

Bayesian framework. In general, MCMC obtains unbiased estimates of parameters by ap-

proximating the complex posterior distributions with the likelihood and priors. Considering

that the current model we are proposing contains three parts of parameters to be estimated,

to improve estimation efficiency, the Hamiltonian Monte Carlo (HMC) method is imple-

mented in the Stan program (Betancourt, 2017). The HMC method enhances the sampling

efficiency of posterior distributions by treating posterior samples as points with potential and

kinetic energy and by leveraging gradients to define the sampling direction. HMC offered

by the Stan program can reach the targeted distribution with fewer iterations compared to

other algorithms and thus is favored in this study (Luo, De Carolis, Zeng, & Jeon, 2023).

The joint likelihood function of response accuracy, response time, and omission is as

follows:

LL = f(τ |µτ , σ
2
τ )×

N∏
i=1

J∏
j=1

(P (Yij|αi, sj, g1j, g2j)
(1−Oij)f(ln tij|αi, τi, β

∗
j , σ

2
Mj, βD, σ

2
D)P (Oij|αi, rj, oj)),

(8)

where f(τ |µτ , σ
2
τ ) is the marginalized probability density function of latent speed τ . To

ensure identifiability of the log-normal distribution, we restrict µτ = 0 (van der Linden,

2016) and let σ2
τ = 1. The formula,

P (Yij|αi, sj, g1j, g2j) = P (Yij = 1)Yij(1− P (Yij = 1))(1−Yij), (9)

represents the likelihood function for response accuracy. Whereas,
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f(ln tij|αi, τi, β
∗
j , σ

2
Mj, βD, σ

2
D) (10)

is the probability density for log-scale response time. And,

P (Oij|αi, rj, oj)) = P (Oij = 1)Oij(1− P (Oij = 1))(1−Oij) (11)

denotes the likelihood function for omission. For priors, the settings used in the simulations

and empirical study follow Ulitzsch et al. (2020) and C. Wang and Xu (2015) and are shown

in Table 2.

As mentioned above, the estimation is implemented in the Stan program in conjunction

with R software. The HMC algorithm in Stan utilizes the No-U-Turn sampler to dynamically

adjust the step size, allowing for effective integration of the Hamiltonian trajectory (Betan-

court, 2017). It should be noted that HMC cannot directly estimate categorical variables.

Therefore, Table 2 does not directly include prior settings for the latent attribute profile αi,

but instead displays the probability of occurrence for each attribute pattern πc = P (α = αc)

where c = 1, 2, . . . , 3K .

In the sampling process, to ensure the monotonic assumption can be satisfied (e.g.,

0 < g2j < g1j < 1 − sj < 1), researchers typically use use truncated distribution for the

constrained parameters (Jiang & Carter, 2019; S. Wang & Chen, 2020). However, in the

pilot study, we found that using truncated distributions for MCDM introduced dependencies

among parameters. Specifically, the truncation boundary of a specific parameter is deter-

mined by another estimate, resulting in non-convergence in the estimation process. There-

fore, in this study, instead of directly constructing posterior distributions for constrained

item parameters, we built the posteriors of transformation parameters R ∼ Beta(αR, βR)

for response accuracy item parameters and O ∼ Beta(αO, βO) for omission item parame-

ters, where αR = αO = 5 and βR = βO = 10. Specifically, the transformation parameters

were sampled and sorted, which ensured the constraints and independence among parameter
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Table 2: The prior settings of model parameters.

Parameters Prior setting
Response accuracy model

1− sj Beta(αs, βs) αs = 5, βs = 10
g1j Beta(αg1 , βg1) αg1 = 5, βg1 = 10
g2j Beta(αg2 , βg2) αg2 = 5, βg2 = 10

πc Dirichlet(Ñ1, ...ÑC) Ñ1 = ... = ÑC = 1
Response time model

β∗
j N(µ1, σ

2
1)I(β∗

j ≥ 0) µ1 = 0, σ2
1 = 5

βD N(µ2, σ
2
2) µ2 = 0, σ2

2 = 5
σ2
Mj InvGamma(a1, b1) a1 = 0.1, b1 = 0.1
σ2
D InvGamma(a2, b2) a2 = 0.1, b2 = 0.1
τi N(0, 1) -

Omission model
1− rj Beta(αr, βr) βr = 10
oj Beta(αo, βo) βo = 10

Note. The priors for parameters of the omission model
were determined based on the omission rate in the
empirical data, making the peak of the posterior align
with the real data.

distributions could be met.

4 Simulation Study

In this section, the main purpose is to validate the estimation process of MCDM. Model

convergence and estimation accuracy for the proposed model are reported. We investigate

the impact of sample size, omission rate and disengaged response rate on the estimation

process, which can offer us a clear picture of whether we can obtain robust estimators under

diverse conditions.

4.1 Research Design

Three factors were manipulated: (1) Sample sizes of N = 1,000 and 1,500, which indicate

medium and large sample size, respectively; (2) Omission rates = 0%, 5%, and 10%, following

the omission rate observed in PISA 2015 Math across different countries (see Appendix A),
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which represent no missing, low missing rate, and medium missing rate respectively; (3)

Disengaged response rates = 30% and 50%, following the observed proportion of disengaged

students reported in previous studies (Hoyt, 2001; OECD, 2019).

As shown in Table 3, the number of attributes were K = 3 corresponding to three at-

tributes, space and shape (α1), quantity (α2) and uncertainty and data (α3), being measured

in the PISA 2015 Math assessment. The number of items was set to 16, and the Q matrix

was set according to the PISA Technical Report (OECD, 2017b). Four identity sub-matrices

were contained in the Q matrix to satisfy the identification requirement of sj, g1j and g2j

(Xu, 2019). Also, note that rj and oj can be identifiable once we ensure the identifiability

of the response accuracy model and thus are free from extra identification burden.

In terms of person parameters, speed τi was assumed to follow N(0, 0.5) with σ2
τ = 0.5

(Ulitzsch et al., 2020; C. Wang & Xu, 2015). To obtain latent profiles, we first generated

p(αik = 1) from multivariate standard normal distribution. That is, students have 50% of

mastering each attribute. We then randomly selected 30% or 50% of students and gener-

ated p(αik = −1) for those selected attribute profiles from multivariate standard normal

distribution to produce disengaged responses.

In terms of item parameters, (g2, g1, s) were set to (0.1, 0.2, 0.2) for all items, representing

high item quality; the disengaged time parameters were βD = 3 and σ2
D = 1.05; the wake-up

parameter was β∗
j = {0.25, 0.5, 0.75, 1, 1.25}, and the time variance for motivated responses

was σ2
M = 0.2. Moreover, we set o = 0.05 and r = 0.96 to reach the 5% missing rate (with

αr = αo = 1) and set o = 0.1 and r = 0.93 for the 10% missing rate (with αr = αo = 2).

When the missing rate was 0%, we set P (Oij = 1) := 0.

The HMC algorithm was used to estimate parameters. Four MCMC chains were set with

5,000 iterations each and the first 2,500 iterations were discarded.
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Table 3: The Q matrix.

Item space and shape (α1) quantity (α2) uncertainty and data (α3)
M033Q01 1 0 0
M474Q01 0 1 0
M411Q01 0 1 0
M411Q02 0 0 1
M803Q01 0 0 1
M442Q02 0 1 0
M034Q01 1 0 0
M305Q01 1 0 0
M496Q01 0 1 0
M496Q02 0 1 0
M423Q01 0 0 1
M406Q01 1 0 0
M406Q02 1 0 0
M603Q01 0 1 0
M564Q01 0 1 0
M564Q02 0 0 1

Note. Items in shadow are selected from M02 item set while others are
selected from M01.

4.2 Evaluation Criteria

To assess model convergence and estimation efficiency, the Gelman-Rubin R̂, effective sample

sizes (ESSs), and running time (t) were used. Specifically, we computed the proportion of R̂

below 1.1 and ESSs > 1,000.

For estimation accuracy, the differences between estimates and true values were reported

for item parameters, and the correlation between the estimated speed τ̂ and true speed τ was

calculated (denoted as ρτ̂ τ ). With regard to attribute patterns, the attribute-wise agreement

rate (AAR) was as follows:

AAR =

∑N
i=1

∑K
k=1 I(α̂ik = αik)

N ×K
. (12)

Additionally, the sensitivity and specificity were employed to examine whether the dis-

engaged responses could be identified correctly. The sensitivity was defined as true positive

rate (TPR), while the specificity was true negative rate (TNR). TPR and TNR were as
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follows:

TPR =

∑N
i=1(p

11
i /p1+i )

N
, (13)

TNR =

∑N
i=1(p

00
i /p0+i )

N
, (14)

where p11i was the probability of classifying the true engaged student i to the normal

group, and p00i was the probability of classifying the true low-motivated student i to the

disengaged group. p1+i represented the marginal probability of labeling student ii as normal

while p0+i had the opposite meaning.

4.3 Results

In terms of model convergence, Table 4 summarizes the proportion of R̂ less than 1.1 and

ESSs greater than 1,000. Results indicated that MCDM was well convergent under all

conditions, with over 99.9% of the estimated parameters having R̂ below 1.1 and over 95.8%

of parameters having ESSs exceeding 1,000. Further inspection reveals that the low ESSs

primarily concern the wake-up parameter β∗
j and the speed parameter τi. This could be

attributed to the fact that the response times of normal response are determined by three

parts: β∗
j , βD, and τi. When disengaged responses account for only a small fraction of all

responses, the estimation of β∗
j and τi may be influenced by the uncertainty that exists in

βD, resulting in a dissatisfied effective sample size.

For estimation efficiency, Table 4 further shows that as the number of parameters to be

estimated increased, the time required for estimation extended. Specifically, the running

time for a sample of 1,500 took longer than that for a sample of 1,000. Models with omission

parameters required longer running time than those without missing data, but the degree

of missingness and the proportion of disengaged responses had no significant impact on the

running time.
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The estimation accuracy for person parameters is shown in Table 5. Under all conditions,

three types of classification accuracy, AAR, TPR, and TNR, were all above 0.9. As expected,

a higher proportion of disengaged responses would increase TNR. Different missing rates

and sample sizes had minimal impact on the attribute classification rates. Additionally,

the correlation between the estimated speed and true values were all above 0.9 under all

conditions, indicating high estimation precision.

The differences between true values and estimates for item parameters and 95% confidence

interval (CI) were displayed in Figures 2 and 3. For the sake of conciseness, only results under

missing rates of 5%, sample sizes of 1,000, and disengaged response proportions of 30% and

50% are presented. For parameters of the response accuracy model (i.e., s, g1, and g2), the

discrepancies between estimates and true values were below 0.1, and the width of the 95%

CI was within 0.1, indicating desirable recovery. For parameters of the omission model (i.e.,

r and o), all parameter deviations from the true values were less than 0.08. Concerning the

response time model, all estimates differed from the true values by less than 0.1. The 95%

CI for βD,σ
2
D, and σ2

M were within 0.06, while the 95% CI for β∗
j was wider.

Further, based on results across all conditions, as the proportion of disengaged responses

increased, the estimation precision of disengaged parameters g2, o, βD, and σ2
D improved.

Specifically, the point estimates of the parameters were closer to the true values, and the

95% CI became narrower. Moreover, the sample size and missing rate had no significant

impact on the estimation accuracy.

5 Application

We apply the proposed model to analyze the PISA 2015 Math assessment to unveil its

potential for detecting disengaged responses and facilitating reliable decisions. We include

the DINA model as the baseline and the reduced MCDM models to provide a plug-and-play

view. The reduced models are expressed as MCDM-RT (modeling response accuracy and
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Table 4: Model convergence indices and running time across different conditions.

missing (%) N disengaged (%) R̂ < 1.1 ESSs> 1, 000 t(h)
0 1000 30 1 0.959 11.165

50 0.999 0.958 11.331
1500 30 1 0.977 25.850

50 1 0.972 19.955
5 1000 30 1 0.969 31.537

50 1 0.969 27.591
1500 30 1 0.972 49.539

50 1 0.965 42.343
10 1000 30 1 0.963 27.190

50 1 0.970 29.864
1500 30 1 0.969 46.449

50 0.999 0.967 54.830

Table 5: Classification accuracy and correlation coefficients for speed across different condi-
tions.

missing (%) N disengaged (%) AAR TPR TNR ρτ τ̂
0 1000 30 0.929 0.993 0.928 0.945

50 0.921 0.986 0.945 0.935
1500 30 0.924 0.991 0.927 0.958

50 0.929 0.99 0.958 0.941
5 1000 30 0.922 0.993 0.9 0.935

50 0.912 0.988 0.929 0.935
1500 30 0.919 0.993 0.94 0.963

50 0.914 0.983 0.944 0.943
10 1000 30 0.916 0.992 0.928 0.949

50 0.914 0.979 0.929 0.939
1500 30 0.913 0.991 0.914 0.955

50 0.917 0.988 0.939 0.938

Note. AAR = attribute-wise agreement rate; TPR = true positive
rate; TNR = true negative rate.
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Figure 2: Discrepancy between estimated item parameters and true values for 16 items (1,000
respondents, 0.05 omission rate, 0.3 disengaged rate).
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Figure 3: Discrepancy between estimated item parameters and true values for 16 items (1,000
respondents, 0.05 omission rate, 0.5 disengaged rate).
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response time) and MCDM-O (modeling response accuracy and omission).

5.1 Dataset

Sixteen binary items were selected from M01 and M02 of the PISA 2015 Math assessment

(OECD, 2017a, 2017b), measuring the same three attributes as the simulation study. The

sample included 12,609 students who answered Form 43.

In the PISA 2015 dataset, the omissions are labeled as: 5 = Valid skip (the item was not

required to be answered according to the test arrangement); 6 = Not reached (the student

did not respond to the given item and subsequent items); 7 = Not applicable (the given

item should be skipped or the answers could not be determined); 8 = Invalid (the answers

exceeded the acceptable range); and 9 = No response (the student did not respond to the

given item). Considering that not reached omissions were mainly caused by time constraints

or device issues (Pohl, Ulitzsch, & von Davier, 2019), in this study, we only dealt with the

label 9 to avoid the impact from compounding factors. The omission rates for each OECD

country could be found in Appendix A, ranging from 0.77% to 10.78%.

Furthermore, based on the technical report (OECD, 2017b), response times greater than

4.4478×MAD were labeled as outliers, where MAD = medi{|xi −medj(xj)|} and {xi} rep-

resents all sample values (Leys, Ley, Klein, Bernard, & Licata, 2013; Rousseeuw & Croux,

1993). The sample consisted of 8,180 students after the data cleaning procedure. We ran-

domly selected 1,000 students for analysis and the omission rate was 4.46%. For models

without omissions (DINA and MCDM-RT), we first removed all missing values and then

randomly sampled 1,000 students. The proportion of correctness, omission rates, and the

mean as well as standard deviation of response time between the full sample and the sub-

sample can be found in Appendices B and C. Both two subsets can effectively represent the

full data.

The HMC algorithm with No-U-Turn sampler was used for estimation. Four MCMC

chains were set with 10,000 iterations each and the first 5,000 iterations were set as warm-
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up.

5.2 Evaluation Criteria

As in the simulation study, the Gelman-Rubin R̂ and ESSs were used to examine the model

convergence. For model comparison, we computed the leave-one-out cross-validation infor-

mation criterion (looic) to estimate the out-of-sample predictive accuracy for all models,

looic = −2×
S∑

s=1

log p(ys|y−s), (15)

where ys represents the sth data point and y−s represents the data without the sth data point.

Given the negative operation in Equation 15, a small looic indicates a powerful prediction

capacity. Furthermore, note that there are differences in data volume fitted by different

models. For example, the data matrix size for the DINA model is 1,000 × 16, while the

data matrix size for the full model is 3,000 × 16. Hence, we standardized looic to increase

comparability. For instance, looicDINA = looic/1, 000 and looicMCDM = looic/3, 000.

For absolute goodness-of-fit, the posterior predictive checking was employed for each

model. Specifically, we simulated 5,000 datasets with parameters generated from the pos-

terior predictive distribution (i.e., each parameter was sampled from 5, 000 × 4 estimates).

Next, the resulting proportion of correct response, omission rate, and density distribution of

response time were compared between the simulated dataset and the observed PISA dataset.

Based on the model comparison results, we proceeded with the optimal model selected

for the PISA 2015 dataset and analyzed the parameter estimates from three levels. First,

at the attribute level, the proportions of mastery, non-mastery and non-active status for

each attribute were presented. Second, at the item level, we investigated the relationships

between different parameters and examined the meaning of each parameter with the real

data. Finally, at the person level, we scrutinized the response patterns for representative

students to determine whether the new model can effectively detect disengaged responses
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Table 6: Model fit and convergence indices.

looicadjusted R̂ < 1.1 ESSs > 5,000
DINA 18.007 1 1
MCDM 17.413 1 0.928
MCDM-O 10.571 1 1
MCDM-RT 23.671 1 0.915

Note. looicadjusted is the model fit index after ad-
justing.

and to explore different types of problem-solving processes.

5.3 Results

Table 6 shows the model fit and convergence indices for all models. R̂ for all models were

close to 1, and more than 90% parameters had ESSs above 5,000, indicating that MCMC

chains were well convergent.

Compared to DINA, MCDM and MCDM-O showed a better fit to the data, while MCDM-

RT had worse model fit performance. This means that: (1) It is necessary to consider two

types of missing responses; (2) if only rapid guessing is considered for disengaged responses

detection, it may be hard to capture the full picture of the PISA 2015 data.

The posterior predictive checking results can be found in Figure 4. All three new models

(MCDM, MCDM-O, and MCDM-RT) covered the actual data well, as evidenced by the

median values of simulated data closely matching those of the real data in the boxplots. In

comparison to DINA, the full model MCDM shows higher representativeness in predicting

correct response proportions for some items (e.g., items 6 and 9). However, overall, there is

no significant difference between the two models.

Combining the results of looic, we further compared MCDM and MCDM-O. For the

common parts of the two models, namely the missing rate, a posterior predictive check was

conducted. Figure 5 presents the results of the posterior predictive check for missing rate

between MCDM and MCDM-O. It can be observed that MCDM better represented the real

data compared to MCDM-O. Specifically, the actual missing rates for each item all fall within
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the 25th-75th percentile of the simulated data set from MCDM, while MCDM-O tended to

generate lower missing proportions for items with higher missing rates (e.g., items 12 and

13).

Additionally, we examined the absolute fit of MCDM and MCDM-RT by comparing the

generated log response time with the actual log response time distribution in the PISA data.

The results of the posterior predictive check are shown in Appendix. It can be observed that

both MCDM and MCDM-RT effectively describe the distribution characteristics of response

times for the majority of items. However, for a few items such as item 9 and item 12, there

is still room for improvement in the fit of both models. Overall, the fit of MCDM is superior

to MCDM-RT.

Taken together, we selected the MCDM full model for subsequent data analysis.

Attribute level. Figure 6 displays the estimated attribute profiles at three levels. It

can be seen that the diagnosis of α2 faced the highest error rate with a non-active proportion

of 15.2%. Moreover, the examinee population’s mastery levels of all attributes were lower

than 50%.

This suggests that researchers should be cautious in the diagnosis of α2. For instance,

it cannot be simply concluded that the examinee population’s mastery of α2 is higher than

that of α1 and α3. When examinees do not exert sufficient effort in answering items, their

responses may not reflect their mastery of the knowledge points (Zhu et al., 2022). If all

examinees’ non-active proportion of α2 are assumed to actually master this attribute, then

the inference that “the population has the best mastery of α2” would be reliable. However,

if all non-active proportion of α2 did not master this attribute, then the proportion of non-

mastery for α2 would reach 63.4% (higher than α1 and α3), leading to the opposite conclusion,

namely “the population has the poorest mastery of α2”.

Item level. The estimated item parameters are shown in Figure 6. For parameters of

the response accuracy model, it is clear that 1 − sj is higher than g1j and g2j. In some

items, g1j is notably higher than g2j (e.g., item 4), but in others, their values are close (e.g.,
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Figure 4: The boxplots of the model-based proportion of correct responses and the real
proportion of correct responses (red diamond represents the actual proportion of correct
responses calculated from the PISA data).
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Figure 5: The boxplots of the model-based missing rates and the real missing rates (red
diamond represents the actual missing rates calculated from the PISA data).

items 12 and 13). This indicates that when examinees master the required attributes, their

probability of correct responses significantly increases. However, when examinees do not

fully master the required attributes, the correct probabilities are similar to that of random

guessing.

Additionally, it is worth noting that although there is a very small difference between g1j

and g2j for some items (shown in the light red shaded areas in Figure 6), the time required for

engaged behavior is higher than that for disengaged responses. This suggests that although

the values of g1j and g2j are similar, they have distinct meanings with the former involving

cognitive processing and the latter not. Correlation coefficients between the differences in

item parameters and the wake-up parameter β∗
j are shown in Table 7. There is a significant

negative correlation between the differences in g1j and g2j and β∗
j . Furthermore, the item

easiness parameter can be calculated as [g1j + (1 − sj)]/2, and the correlation coefficient

cor(easiness,β∗
j )=-0.575, with p = 0.019 < 0.05. This implies that as items become more

difficult, more time is required to consider the items and fully engage the related attributes.

For the response time model, the variance of disengaged responses σ2
D is considerably

28



Figure 6: The estimated attribute profiles (left) and item parameters (right).

greater than that for normal responses σ2
M in almost all items (except for item 12). This

result aligns with previous research findings (Bolsinova & Tijmstra, 2019; Domingue et al.,

2022). Different examinees may exhibit different patterns of lack of effort, leading to more

fluctuation in their response times compared to normal responses.

For the omission model, it can be observed that the probability of missing for engaged

behavior (1 − rj) remains stable across different items, while oj tended to exhibit more

pronounced fluctuations. Further analysis of missing under normal or disengaged behaviors

for each item (see Table 8) reveals that in items measuring α1 and α3, missing responses

mainly happened in engaged responses, indicating that examinees are unable to answer

these items even after investing effort, with only item 4 being an exception. Additionally, it

is found that there is no significant relationship between question type (multiple-choice or

open-ended) and different types of missing responses.

Examinee level. Defining examinees with αik = −1 as the category of exhibiting

disengaged responses during the test procedure, the disengaged rate of the PISA 2015 dataset

is 17.3%. To determine whether MCDM can preciously capture disengaged responses, three

representative examinees are presented. They are examinee 10559 with α = (−1,−1,−1),
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Table 7: The correlation between the differences of item parameters and the wake-up pa-
rameter.

cor(diff, β∗
j )

(1− sj, g1j) 0.630**
(1− sj, g2j) 0.363
(g1j, g2j) -0.567*
(1− rj, oj) -0.296

∗ indicates p < 0.05,
∗ ∗ indicates p < 0.01;
cor = correlation, diff = the
differences between two pa-
rameters.

ID: 10559 ID: 10826 ID: 5595

Figure 7: Response accuracy, response time, and omission behavior for representative re-
spondents. Note. 0 = incorrect, 1 = correct, NA = missing; α = (−1,−1,−1) represents
disengaged response behavior, α = (1, 1, 1) and α = (0, 0, 0) represent normal behavior.

indicating disengaged responses; examinee 10826: α = (1, 1, 1), indicating engaged responses

and mastery of all attributes; examinee 5595: α = (0, 0, 0), indicating engaged response but

no mastery of any knowledge attribute.

Figure 7 presents the response patterns of the three examinees. It can be observed

that compared to examinees with normal responses, those identified as having disengaged

responses exhibit higher missing rates, lower correct proportions, and shorter and more

fluctuating response times. The examinee took a long time to answer some items (e.g., 129

seconds for item 3), while answered others very quickly (e.g., 4 seconds for item 13).
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Table 8: The omission under normal or disengaged behavior for each item.

attribute item format disengaged omission engaged omission
α1 MC 26.67 73.33

OR - -
MC 28.57 71.43
OR 25.60 74.40
OR 17.67 82.33

α2 MC 40.00 60.00
OR 63.49 36.51
MC 46.99 53.01
MC 66.67 33.33
OR 48.72 51.28
MC 70.00 30.00
MC 40.00 60.00

α3 MC 80.00 20.00
OR 23.08 76.92
MC 0.00 100.00
MC - -

Note. MC = Multiple Choice; OR = Open Response.

6 Discussion

CDT aims at providing detailed feedback for students’ knowledge profiles and is mainly

applied in low-stakes scenarios. Given that students face no direct consequences from their

test performance in low-stakes testing, disengaged behaviors are more common compared to

high-stakes scenarios, which poses a substantial threat to data quality and decision validity

(Hong, Steedle, & Cheng, 2020). To detect disengaged responses, this study proposed MCDM

leveraging a multi-level attribute structure to link students’ test-taking motivations with

attribute profiles. A plug-and-play model framework was developed, allowing researchers to

simultaneously consider rapid guessing and omissions, and to distinguish between omissions

resulting from normal and disengaged behaviors.

To facilitate the empirical application of the new model, we offer several suggestions

for the practitioners. First, MCDM can be flexibly adjusted for specific research purposes

and data structures. In this study, MCDM is grounded on DINA, but it is not limited to

any specific accuracy model. Therefore, researchers can establish corresponding motivation
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models based on different CDMs such as DINO or G-DINA, depending on their research

questions. Additionally, in our empirical study, based on the model fitting results with PISA

2015 data, the full model was ultimately chosen for parameter analysis. However, the two

reduced models of MCDM (MCDM-RT and MCDM-O) also exhibit strong predictive power.

Considering that the estimation time is directly related to the number of parameters, when

researchers are primarily concerned with rapid guessing or different types of omissions, they

can evaluate the model fitting of specific data and choose to use the reduced models to

enhance estimation efficiency.

Second, the parameters obtained from MCDM can provide important insights into po-

tential factors that cause disengaged behaviors. It would be helpful to understand why

some attributes are more frequently involved in disengaged responses. Additionally, based

on the results of the empirical study, for certain items, the proportion of missing responses

attributable to engaged responses is considerable. While this study only analyzed the influ-

ence of item difficulty and item format on students’ activation of knowledge, researchers can

conduct detailed analyses with various item or person characteristics. For example, future

exploration could integrate item content, item length, or students’ background information

to better understand factors contributing to disengaged responses, thereby enhancing the

validity of diagnostic decisions and improving test design.

This study still has several limitations. First, a more efficient estimation algorithm

would be beneficial. Future researchers could develop estimation procedures based on the

Expectation-Maximization (EM) algorithm. This study implemented the HMC algorithm

based on the Stan platform, which has improved the sampling efficiency to some extent. But

when dealing with multi-level attributes, the possible attribute mastery/activation patterns

can reach 3K , which still slows down the estimation process. Another solution is developing

estimation methods using reduced attributes. This study only examined scenarios involving

three attributes in the test, resulting in 33 = 27 possible attribute mastery patterns. If the

test includes more number of attributes, addressing how to bypass the computation of 3K
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likelihood functions becomes a crucial issue. Using reduced attributes could be a potential

option, where the ideal response can be represented as: ηij = I(αij
∗ = 1)− I(−1 ∈ αij

∗).

Finally, researchers can incorporate richer data into the plug-and-play framework of

MCDM. While this study has already allowed for simultaneously modeling rapid guessing

and omission, identifying disengaged responses based on response accuracy, response time,

and missing may still have room for improvement. It is still challenging to unleash students’

problem-solving process. In the future, more detailed information such as eye-tracking data

(Man & Harring, 2021) could be integrated into MCDM to precisely trace examinees’ at-

tention trajectories during the test and identify potential performances of low test-taking

motivation.
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A Sample sizes and omission rates for OECD countries

OECD country N omission (%) OECD country N omission (%)
ARE 187 3.54 KOR 147 2.72
AUS 375 4.78 LTU 169 5.29
AUT 182 5.60 LUX 137 4.38
BEL 228 4.14 LVA 134 3.45
BGR 153 5.64 MAC 111 1.46
BRA 390 6.84 MEX 171 2.96
CAN 541 2.82 MNE 127 10.78
CHE 200 4.16 NLD 135 3.19
CHL 170 7.06 NOR 151 5.30
COL 311 4.12 NZL 118 4.87
CRI 161 5.12 PER 138 5.93
CZE 170 5.74 POL 173 3.40
DEU 164 4.08 PRT 182 5.56
DNK 175 4.43 QAT 422 5.18
DOM 140 8.84 QCH 281 1.87
ESP 165 5.64 QES 819 5.20
EST 143 3.23 QUC 46 1.90
FIN 162 3.55 QUE 49 0.77
FRA 159 5.31 RUS 137 4.01
GBR 366 4.20 SGP 160 1.76
GRC 150 4.00 SVK 151 3.85
HKG 140 1.43 SVN 155 4.60
HRV 141 5.50 SWE 124 5.34
HUN 141 6.07 TAP 201 1.68
IRL 211 2.75 THA 214 2.31
ISL 90 3.13 TUN 102 8.58
ISR 171 5.48 TUR 160 5.08
ITA 313 5.31 URY 134 10.21
JPN 177 2.93 USA 144 1.87
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B Data characteristics of the full sample and the subset data

Item
The proportion of
correct responses

omission rates Log response times (second)

full subset full subset full (Mean) subset (Mean) full (SD) subset (SD)
1 0.731 0.727 0.010 0.015 3.741 3.744 0.461 0.472
2 0.602 0.594 0.005 0.005 3.799 3.778 0.508 0.509
3 0.425 0.430 0.056 0.063 4.664 4.656 0.842 0.837
4 0.434 0.449 0.014 0.010 3.796 3.778 0.687 0.672
5 0.211 0.205 0.032 0.026 4.387 4.374 0.523 0.563
6 0.250 0.253 0.094 0.083 4.818 4.807 0.635 0.658
7 0.326 0.321 - - 4.432 4.407 0.558 0.594
8 0.419 0.417 0.007 0.007 4.118 4.127 0.622 0.640
9 0.419 0.400 0.002 0.003 4.052 4.007 0.955 1.006
10 0.595 0.598 0.035 0.039 4.048 4.059 0.835 0.834
11 0.738 0.739 0.005 0.004 3.411 3.401 0.521 0.554
12 0.187 0.205 0.169 0.168 4.132 4.127 1.144 1.170
13 0.090 0.112 0.286 0.283 3.778 3.761 1.040 1.068
14 0.331 0.329 0.011 0.010 4.383 4.387 0.747 0.746
15 0.463 0.490 0.005 0.005 3.790 3.757 0.876 0.870
16 0.442 0.461 - - 3.867 3.815 0.858 0.873

Note. Item 7 (CM034Q01S) and item 16 (CM564Q02S) are the last question of M01 and M02
respectively.
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C Data characteristics of the full sample and the sub-

set data (without omissions)

Item
The proportion of
correct responses

Log response times (second)

full subset full (Mean) subset (Mean) full (SD) subset (SD)
1 0.758 0.749 3.725 3.728 0.445 0.439
2 0.648 0.653 3.774 3.774 0.499 0.498
3 0.485 0.477 4.681 4.671 0.810 0.845
4 0.478 0.458 3.826 3.791 0.640 0.636
5 0.261 0.256 4.386 4.389 0.493 0.503
6 0.308 0.313 4.917 4.891 0.498 0.538
7 0.372 0.366 4.451 4.430 0.532 0.570
8 0.445 0.445 4.157 4.139 0.603 0.634
9 0.484 0.466 4.076 4.031 0.939 0.944
10 0.650 0.634 4.033 3.999 0.803 0.774
11 0.766 0.770 3.382 3.351 0.506 0.510
12 0.261 0.244 4.184 4.186 1.224 1.207
13 0.141 0.127 4.138 4.154 0.860 0.851
14 0.370 0.374 4.435 4.390 0.700 0.762
15 0.501 0.508 3.785 3.795 0.872 0.844
16 0.487 0.511 3.924 3.913 0.832 0.845
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D The posterior predictive check for log response time

D.1 The model-based log response time (black line) and actual

log response time distribution (gray line) of the MCDM full

model
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D.2 The model-based log response time (black line) and actual log

response time distribution (gray line) of the reduced MCDM-

RT model

43


