$\sqrt{7.5/0.3 - 16} = ?$

Sequential Cognitive Diagnosis Model

A sequential cognitive diagnosis model for polytomous responses

Wenchao Ma & Jimmy de la Torre 06 October 2016 IF: 1.93

The British Psychological Society Promoting excellence in psychology

Reporter: Yingshi Huang

Sequential Cognitive Diagnosis Model

How to classify examinees into different latent classes with unique attribute patterns indicating mastery or non-mastery of a number of skills or attributes ?

Cognitive diagnosis models (CDMs)

- deterministic inputs, noisy 'AND' gate, DINA
- deterministic inputs, noisy 'OR' gate, DINO
- generalized DINA, G-DINA
- log-linear CDM, LCDM
- general diagnostic model, GDM

How to classify examinees into different latent classes with unique attribute patterns indicating mastery or non-mastery of a number of skills or attributes? Cognitive diagnosis models (CD) otomous responses JM, LCDV • deterministic inputs • determi general diagnostic model, GDM

Sequential Cognitive Diagnosis Model

How to deal with polytomously scored items?

- Dichotomize
 - Using existing dichotomous CDMs loss of information
- Polytomous CDMs
 - Partial credit DINA, PC-DINA
 - GDM for graded respon overlook the relation between
 - nominal response diagn
 - polytomous LCDM

attributes and categories

- Solving an item consists of a finite number of sequential steps, each of which involves some attributes
- Score according to how many successive steps they have successfully performed
- Responses to items with h steps have h + 1 ordered categories

Attribute and category association

- Solving an item consists of a finite number of sequential steps, each of which involves some attributes
- Score according to how many successive steps they have successfully performed

• Responses to items with h s categories $\sqrt{7.5/0.3 - 16}$

$$=\sqrt{25-16}$$
 (division)

$$=\sqrt{9}$$
 (subtraction)

= 3 (extraction of a root)

- traditional Q-matrix
 - a $J \times K$ binary matrix specifying whether an attribute is measured by an item

	Attributes			-
Items	A ₁	A ₂	 A _K	-
1	0	0	 1	1 / 0
2	1	1	 0	Y _{jk} =170
J	0	1	 1	

Sequential Cognitive Diagnosis Model

Attribute and category association

category-level Q-matrix (Q_c-matrix)

- a $\sum_{j=1}^{J} H_j \times K$ binary matrix, which subscript C is used to denote category

	Attributes		
Category	A ₁	A_2	 A_{K}
1	1	0	 0
2	0	1	 0
Н	0	0	 1

Sequential Cognitive Diagnosis Model

Huang Yingshi

9

Attribute and category association

- category-level Q-matrix (Q_c-matrix)
 - an example: the restricted Q_c-matrix
 - the attribute and category association must be known a priori

		Attributes						
Step	Category	A ₁ (division)	A ₂ (subtraction)	A_{κ} (extraction of a root)				
$\sqrt{25 - 16}$	1	1	0	0				
$\sqrt{9}$	2	0	1	0				
3	3	0	0	1				
	e.g., after subtraction	examinees ha n attribute is ne	ve already achieve eeded to perform o	ed category 1, only the category 2				

Sequential Cognitive Diagnosis Model

Attribute and category association

- category-level Q-matrix (Q_c-matrix)
 - an example: the unrestricted Q_c-matrix
 - all attributes required by an item are needed by each category

				Attribut	tes		
Step	Category	(d	A ₁ ivision)	A ₂ (subtraction)		A_{κ} (extraction of	a root)
$\sqrt{25 - 16}$	1		1	1		1	
$\sqrt{9}$	2		1	1		1	
3	3		1	1		1	

• category-level Q-matrix :
$$\sum_{j=1}^{J} H_j \times K$$
 binary matrix

• the *K* binary attributes lead to 2^{K} latent classes with unique attribute patterns (i.e., $\alpha_{c} = (\alpha_{c1}, ..., \alpha_{cK})$), where $c = 1, ..., 2^{K}$

 $\alpha_{ck}=1 \rightarrow mastered$ $\alpha_{ck}=0 \rightarrow not mastered$

sequential processing

$$s_{jh}(\alpha_c) = P(X_{ij} \ge h | X_{ij} \ge h - 1, \alpha_c) = \frac{P(X_{ij} \ge h | \alpha_c)}{P(X_{ij} \ge h - 1 | \alpha_c)}$$

Sequential process model

the category response function for item j:

$$P(X_j = b | \boldsymbol{\alpha}_c) = [1 - S_j(b + 1 | \boldsymbol{\alpha}_c)] \prod_{x=0} S_j(x | \boldsymbol{\alpha}_c)$$

answer category *h* + 1 incorrectly

independent

categories 1, ..., *h* correctly

•
$$\int_{b=0}^{H_j} P(X_j = b | \boldsymbol{\alpha}_c) = 1 \quad \forall c$$

$$\int_{s_j(b|\boldsymbol{\alpha}_c)}^{H_j} P(X_j = b | \boldsymbol{\alpha}_c) = \begin{cases} 1, & \text{if } b = 0\\ 0, & \text{if } b = H_j + 1 \end{cases}$$

- partition the latent classes 2^{κ} into $2^{\kappa^{*j}}$ latent groups $K_{j}^{*} = \sum_{k=1}^{K} q_{jk}$
- for category h: further collapse 2^{K^*j} latent groups into 2^{K^*jh}

the first K_{jh}^* attributes are required for category *h* of item *j* $\alpha_{ljh}^* = [\alpha_{l1}, \dots, \alpha_{lk}, \dots, \alpha_{lK_{jh}^*}]$ $l = 1, \dots, 2^{K_{jh}^*}$

Sequential G-DINA model

• using the identity link G-DINA model:

 $S_j(b|\boldsymbol{\alpha}_c) \longrightarrow S_j(b|\boldsymbol{\alpha}_{ljb}^*)$

Sequential Cognitive Diagnosis Model

• using the identity link G-DINA model:

 $S_i(b|\boldsymbol{\alpha}_c) \implies S_i(b|\boldsymbol{\alpha}_{lib}^*)$ $S_{j}(b|\boldsymbol{\alpha}_{ljb}^{*}) = \phi_{jb0} + \sum_{k=1}^{K_{jb}^{*}} \phi_{jbk} \alpha_{lk} + \sum_{k'=k+1}^{K_{jb}^{*}} \sum_{k=1}^{K_{jb}^{*}-1} \phi_{jbkk'} \alpha_{lk} \alpha_{lk'} + \dots$ $+ \phi_{jb12\dots K_{jb}^*} \prod \alpha_{lk},$ $\phi_{ih} = \{\phi_{jh0}, \phi_{jh1}, \dots, \phi_{jh12\dots K_{ih}^*}\}$ $S_j(b|\boldsymbol{\alpha}_{ljb}^*) \longrightarrow \{S_j(b|\boldsymbol{\alpha}_{ljb}^*)\} \longrightarrow M_{jb}\boldsymbol{\phi}_{jb}$ invertible design matrix of dimension $2^{\kappa^* jh} \times 2^{\kappa^* jh}$

Sequential Cognitive Diagnosis Model

• using the identity link G-DINA model:

 $S_i(b|\boldsymbol{\alpha}_c) \implies S_j(b|\boldsymbol{\alpha}_{lib}^*)$ $S_{j}(b|\boldsymbol{\alpha}_{ljb}^{*}) = \phi_{jb0} + \sum_{k=1}^{K_{jb}^{*}} \phi_{jbk} \alpha_{lk} + \sum_{k'=k+1}^{K_{jb}^{*}} \sum_{k=1}^{K_{jb}^{*}-1} \phi_{jbkk'} \alpha_{lk} \alpha_{lk'} + \dots$ $+ \phi_{jb12\dots K_{jb}^*} \prod_{k=1}^{l} \alpha_{lk},$ **RS-GDINA** (restricted) $S_j(b|\boldsymbol{\alpha}_{lib}^*) \longrightarrow \{S_j(b|\boldsymbol{\alpha}_{lib}^*)\} \longrightarrow M_{jb}\boldsymbol{\varphi}_{jb}$ **US-GDINA** (unrestricted)

Sequential Cognitive Diagnosis Model

Huang Yingshi

17

Parameter estimation

• the conditional probability of the response vector \mathbf{X}_i (i = 1,...,N)

$$P(\mathbf{X}_{i} | \boldsymbol{\alpha}_{lj}^{*}) = \prod_{j=1}^{J} \prod_{b=0}^{H_{j}} P(X_{j} = b | \boldsymbol{\alpha}_{lj}^{*})^{I(X_{ij} = b)}$$
reduced attribute pattern for the *l*th collapsed latent group for item *j* an indicator variable evaluating whether X_{ii} is equal to *h*

• the E-step

- the expected number of examinees with attribute pattern α_{ij}^* scoring in category *h*

$$\bar{r}_{ljb} = \sum_{i=1}^{N} I(X_{ij} = b) P(\boldsymbol{\alpha}_{lj}^* | \mathbf{X}_i)$$

$$P(\boldsymbol{\alpha}_{lj}^* | \mathbf{X}_i) = \frac{P(\mathbf{X}_i | \boldsymbol{\alpha}_{lj}^*) p(\boldsymbol{\alpha}_{lj}^*)}{\sum_{l=1}^{2^{K_j^*}} P(\mathbf{X}_i | \boldsymbol{\alpha}_{lj}^*) p(\boldsymbol{\alpha}_{lj}^*)}$$

Sequential Cognitive Diagnosis Model

- the M-step
 - maximize the objective function with respect to item parameters ϕ_i

$$\ell = \sum_{l=1}^{2^{K_j^*}} \sum_{b=0}^{H_j} \bar{r}_{ljb} \log \left[\hat{P}(X_j = b | \boldsymbol{\alpha}_{lj}^*) \right]$$
optimization

• the Nelder and Mead (1965) simplex method

- after generating a geometric simplex, its convergence is guided by moving the simplex appropriately

Parameter estimation

the expectation of category response function for item *j*

$$P(X_j = b | \boldsymbol{\alpha}_c) = [1 - S_j(b + 1 | \boldsymbol{\alpha}_c)] \prod_{x=0}^b S_j(x | \boldsymbol{\alpha}_c)$$

$$\hat{P}(X_j = b | \boldsymbol{\alpha}_{lj}^*) = \frac{\sum_{i=1}^N I(X_{ij} = b) P(\boldsymbol{\alpha}_{lj}^* | \mathbf{X}_i)}{\sum_{i=1}^N P(\boldsymbol{\alpha}_{lj}^* | \mathbf{X}_i)}$$

the marginal likelihood estimates of $S_j(b|\boldsymbol{\alpha}_{lj}^*)$

least-squares method

item parameter $\boldsymbol{\phi}$

expected a posteriori (EAP)

individuals' attribute patterns

• US-GDINA

- NRDM (the processing function is the G-DINA model)

- PC-DINA model (the processing function is the DINA model)

$$P(X_j = b | \boldsymbol{\alpha}_{lj}^*) = \delta_{jb0} + \sum_{k=1}^{K_j^*} \delta_{jbk} \alpha_{lk} + \sum_{k'=k+1}^{K_j^*} \sum_{k=1}^{K_j^*-1} \delta_{jbkk'} \alpha_{lk} \alpha_{lk'} + \ldots + \delta_{jb12\dots K_j^*} \prod_{k=1}^{K_j^*} \alpha_{lk} \alpha_{lk'} + \ldots + \delta_{jb12\dots K_j^*} \prod_{k=1}^{K_j^*} \alpha_{lk'} \alpha_{lk$$

22

Study 1 - purpose

Parameters of The Sequential G-DINA

Whether parameters of the sequential G-DINA model can be

recovered accurately based on the proposed estimation algorithm?

Person Classifications

Whether the sequential G-DINA model can provide more accurate person classifications

than the G-DINA model using dichotomized responses?

Parameter Recovery

Whether the attribute and category association can be

used to improve parameter recovery for the sequential G-DINA model?

Sequential Cognitive Diagnosis Model

Study 1 - design

Independent variables

- **Sample size** (N = 500, 1,000, 2,000 or 4,000)

uniform attribute distribution & RS-GDINA model

- **Item quality** (high, moderate, low)

$$S_j(b|\alpha_{ljb}^* = 1) = .9 \text{ and } S_j(b|\alpha_{ljb}^* = 0) = .1$$

 $S_j(b|\alpha_{ljb}^* = 1) = .8 \text{ and } S_j(b|\alpha_{ljb}^* = 0) = .2$
 $S_j(b|\alpha_{ljb}^* = 1) = .7 \text{ and } S_j(b|\alpha_{ljb}^* = 0) = .3$

Study 1 - design

25

Table 3. Restricted Q_C-matrix for data simulation

Item	Category	A1	A2	A3	A4	A5	Item	Category	A1	A2	A3	A4	A5
1	1	1	0	0	0	0	11	1	1	1	0	0	0
1	2	0	1	0	0	0	11	2	0	0	0	0	1
2	1	0	0	1	0	0	12	1	1	1	1	0	0
2	2	0	0	0	1	0	12	2	0	0	0	1	1
3	1	0	0	0	0	1	13	1	1	1	0	0	0
3	2	1	0	0	0	0	13	2	0	0	1	1	1
4	1	0	0	0	0	1	14	1	1	0	1	0	0
4	2	0	0	0	1	0	14	2	0	0	0	1	0
5	1	0	0	1	0	0	14	3	0	0	0	0	1
5	2	0	1	0	0	0	15	1	0	0	0	0	1
6	1	1	0	0	0	0	15	2	0	0	1	1	0
6	2	0	1	1	0	0	15	3	0	1	0	0	0
7	1	0	0	1	0	0	16	1	1	0	0	0	0
7	2	0	0	0	1	1	16	2	0	1	0	0	0
8	1	0	0	0	0	1	16	3	0	0	1	1	0
8	2	1	1	0	0	0	17	1	1	0	0	0	0
9	1	0	0	0	1	1	18	1	0	1	0	0	0
9	2	0	0	1	0	0	19	1	0	0	1	0	0
10	1	0	1	0	1	0	20	1	0	0	0	1	0
10	2	1	0	0	0	0	21	1	0	0	0	0	1

Sequential Cognitive Diagnosis Model

Study 1 - design

Independent variables

- **Sample size** (N = 500, 1,000, 2,000 or 4,000)

uniform attribute distribution & RS-GDINA model

- Item quality (high, moderate, low)

$$S_{j}(b|\boldsymbol{\alpha}_{ljb}^{*} = \mathbf{1}) = .9 \text{ and } S_{j}(b|\boldsymbol{\alpha}_{ljb}^{*} = \mathbf{0}) = .1$$

$$S_{j}(b|\boldsymbol{\alpha}_{ljb}^{*} = \mathbf{1}) = .8 \text{ and } S_{j}(b|\boldsymbol{\alpha}_{ljb}^{*} = \mathbf{0}) = .2$$

$$S_{j}(b|\boldsymbol{\alpha}_{ljb}^{*} = \mathbf{1}) = .7 \text{ and } S_{j}(b|\boldsymbol{\alpha}_{ljb}^{*} = \mathbf{0}) = .3$$

$$\implies \text{ monotonicity constraint}$$

$$P_{lj} = \left[P(X_{j} = 0|\boldsymbol{\alpha}_{lj}^{*}), \dots, P(X_{j} = H_{j}|\boldsymbol{\alpha}_{lj}^{*})\right]$$

Dichotomously: Bernoulli

Polytomously: generalized Bernoulli

Study 1 - design

27

To fit the US-GDINA model

 Table 3. Restricted Q_C-matrix for data simulation

Item	Category	A1	A2	A3	A 4	A5	Item	Category	A1	A2	A3	A 4	A5
1	1	1	0	0	0	0	11	1	1	1	0	0	0
1	2	0	1	0	0	0	11	2	0	0	0	0	1
2	1	0	0	1	0	0	12	1	1	1	1	0	0
2	2	0	0	0	1	0	12	2	0	0	0	1	1
3	1	0	0	0	0	1	13	1	1	1	0	0	0
3	2	1	0	0	0	0	13	2	0	0	1	1	1
4	1	0	0	0	0	1	14	1	1	0	1	0	0
4	2	0	0	0	1	0	14	2	0	0	0	1	0
5	1	0	0	1	0	0	14	3	0	0	0	0	1
5	2	0	1	0	0	0	15	1	0	0	0	0	1
6	1	1	0	0	0	0	15	2	0	0	1	1	0
6	2	0	1	1	0	0	15	3	0	1	0	0	0
7	1	0	0	1	0	0	16	1	1	0	0	0	0
7	2	0	0	0	1	1	16	2	0	1	0	0	0

Sequential Cognitive Diagnosis Model

Study 1 - design

• To fit the G-DINA model

- for one, partial credit and full marks were

converted to 1;

- for the other, only full marks were converted to 1,

and partial credit was transformed to 0.

Study 1 - design

Dependent variables

- **RMSE** (the root mean square error)
- only calculated for the sequential G-DINA model;

$$\text{RMSE} = \sqrt{\frac{\sum_{r=1}^{R} \sum_{c=1}^{2^{K}} \int_{j=1}^{J} \left[\hat{P}^{(r)}(X_{j} = b | \boldsymbol{\alpha}_{c}) - P^{(r)}(X_{j} = b | \boldsymbol{\alpha}_{c})\right]^{2}}{J \times 2^{K} \times R}}$$

- **PCV** (the proportion of correctly classified attribute vectors) $PCV = \frac{\sum_{i=1}^{R} \sum_{i=1}^{N} I^{(r)} [\alpha_{i} = \hat{\alpha}_{i}]}{N \times R}$ A General Polytomous CDM for Graded Responses Simulation Study

Stu

Figure 1. RMSE of the sequential G-DINA models.

Sequential Cognitive Diagnosis Model

Study 1 - results

Table 4.	PCVs for the sequen	tial G-DINA model	s and the G-DINA n	node partial	full
N	Item quality	RS-GDINA	US-GDINA	GDINA1	GDINA2
500	High	.917	.901	.759	.742
	Moderate	.679	.601	.442	.371
	Low	.310	.223	.182	.142
1,000	High	.921	.911	.790	.752
	Moderate	.692	.641	.476	.415
	Low	.354	.254	.199	.147
2,000	High	.923	.918	.799	.761
	Moderate	.697	.674	.501	.441
	Low	.372	.295	.217	.152
4,000	High	.924	.921	.809	.765
	Moderate	.702	.690	.534	.456
	Low	.384	.339	.240	.168

Sequential Cognitive Diagnosis Model

The Impact of The Discrepancy

the impact of the discrepancy between the observed and predicted

processing functions on parameter estimation

LRT, AIC, BIC

whether these indices can be used to select the appropriate sequential G-DINA model under various degrees of discrepancy

Sequential Cognitive Diagnosis Model

Study 2 - design

Independent variables

- **Sample size** (N = 500, 1,000, 2,000 or 4,000)
- Item quality (high, moderate, low)
- magnitude of disturbances (small, large)
- the uncertainty in attribute and category association

 $\varepsilon \sim U[-0.1, 0.1] \rightarrow \text{small disturbance}; \varepsilon = 0.1$ $\varepsilon \sim U[-0.2, 0.2] \rightarrow \text{large disturbance}; \varepsilon = 0.2$

Study 2 - design

Dependent variables

- LRT (0.05 significant level)
- AIC
- BIC

The proportion choosing the US-GDINA model for each statistic The PCV based on the models selected by the LRT, AIC, and BIC

Study 2 - results

35

Table 5. Proportion choosing the US-GDINA model

		0 = 3			$\varepsilon = 0.$	1		$\varepsilon = 0.1$	$\epsilon = 0.2$		
N	Item quality	LRT	AIC	BIC	LRT	AIC	BIC	LRT	AIC	BIC	
500	High	.14	.00	.00	1.00	.01	.00	1.00	1.00	.00	
	Moderate	.90	.00	.00	1.00	.00	.00	1.00	.99	.00	
	Low	1.00	.00	.00	1.00	.00	.00	1.00	.31	.00	
1,000	High	.08	.00	.00	1.00	1.00	.00	1.00	1.00	.00	
-	Moderate	.57	.00	.00	1.00	.02	.00	1.00	1.00	.00	
	Low	1.00	.00	.00	1.00	.01	.00	1.00	.98	.00	
2,000	High	.02	.00	.00	1.00	1.00	.00	1.00	1.00	.98	
	Moderate	.24	.00	.00	1.00	.90	.00	1.00	1.00	.14	
	Low	1.00	.00	.00	1.00	.03	.00	1.00	1.00	.00	
4,000	High	.06	.00	.00	1.00	1.00	.12	1.00	1.00	1.00	
-	Moderate	.11	.00	.00	1.00	1.00	.00	1.00	1.00	1.00	
	Low	.96	.00	.00	1.00	.67	.00	1.00	1.00	.00	

Sequential Cognitive Diagnosis Model

Study 2 - results

36

Table 5. Proportion choosing the US-GDINA model

		0 = 3			$\epsilon = 0.1$			$\epsilon = 0.2$		
N	Item quality	LRT	AIC	BIC	LRT	AIC	BIC	LRT	AIC	BIC
500	High	.14	.00	.00	1.00	.01	.00	1.00	1.00	.00
	Moderate	.90	.00	.00	1.00	.00	.00	1.00	.99	.00
	Low	1.00	.00	.00	1.00	.00	.00	1.00	.31	.00
1,000	High	.08	.00	.00	1.00	1.00	.00	1.00	1.00	.00
	Moderate	.57	.00	.00	1.00	.02	.00	1.00	1.00	.00
	Low	1.00	.00	.00	1.00	.01	.00	1.00	.98	.00
2,000	High	.02	.00	.00	1.00	1.00	.00	1.00	1.00	.98
	Moderate	.24	.00	.00	1.00	.90	.00	1.00	1.00	.14
	Low	1.00	.00	.00	1.00	.03	.00	1.00	1.00	.00
4,000	High	.06	.00	.00	1.00	1.00	.12	1.00	1.00	1.00
-	Moderate	.11	.00	.00	1.00	1.00	.00	1.00	1.00	1.00
	Low	.96	.00	.00	1.00	.67	.00	1.00	1.00	.00

Sequential Cognitive Diagnosis Model

Table 6. PCVs of the sequential G-DINA models and selected models using the LRT, AIC, and BIC

		ε = 0.1					ε = 0.2				
N	Item quality	LRT	AIC	BIC	RS-GDINA	US-GDINA	LRT	AIC	BIC	RS-GDINA	US-GDINA
500	High	.927	.926	.926	.926	.927	.935	.935	.910	.910	.935
	Moderate	.644	.690	.690	.690	.644	.757	.757	.719	.719	.757
	Low	.252	.324	.324	.324	.252	.330	.347	.347	.347	.330
1,000	High	.934	.934	.928	.928	.934	.947	.947	.921	.921	.947
	Moderate	.676	.698	.698	.698	.676	.790	.790	.726	.726	.790
	Low	.286	.359	.360	.360	.286	.403	.403	.387	.387	.403
2,000	High	.940	.940	.930	.930	.940	.951	.951	.950	.923	.951
	Moderate	.709	.709	.707	.707	.709	.806	.806	.744	.733	.806
	Low	.335	.383	.384	.384	.335	.468	.468	.412	.412	.468
4,000	High	.943	.943	.934	.933	.943	.952	.952	.952	.925	.952
	Moderate	.720	.720	.708	.708	.720	.814	.814	.814	.734	.814
	Low	.384	.389	.396	.396	.384	.501	.501	.416	.416	.501

- Using the LRT can be lower than the upper benchmark by up to 10%;
- For **the BIC**, the maximum difference in PCV between the selected models and the upper benchmark is 8.5%;
- **The AIC** yielded the same PCV as the upper benchmark

Sequential Cognitive Diagnosis Model

- booklets 4 and 5 of the Trends in International Mathematics and Science Study (TIMSS) 2007 fourth-grade mathematics assessment
- 823 students to 12 of 25 items involving eight of the original 15 attributes identified by Lee et al. (2011)

Table 7. Attribute definitions for TIMSS 2007 data

- A1 Representing, comparing, and ordering whole numbers as well as demonstrating knowledge of place value
- A2 Recognizing multiples, computing with whole numbers using the four operations, and estimating computations
- A3 Solving problems, including those set in real-life contexts (e.g., measurement and money problems)
- A4 Finding the missing number or operation and modelling simple situations involving unknowns in number sentence or expression
- A5 Describing relationships in patterns and their extensions; generating pairs of whole numbers by a given rule and identifying a rule for every relationship given pairs of whole numbers
- A6 Reading data from tables, pictographs, bar graphs, and pie charts
- A7 Comparing and understanding how to use information from data.
- A8 Understanding different representations and organizing data using tables, pictographs, and bar graphs

Source: Modified from Lee et al. (2011).

A. Use the information in the posters to complete the tables.

Mountain Bike rental								
Hours	Cost (zeds)							
1	8							
2	11							
3								
4								
5								
6								

Roadrace Bike Rentals								
Hours	Cost (zeds)							
1	10							
2	12							
3								
4								
5								
6								

B. For what number of hours are the rental costs the same at the two clubs?

- consider the two items as a single polytomous item to handle the testlet effect
- allow for answering item 7a
 successfully as a prerequisite
 to answering item 7b correctly
 for most

820 students to 11 items were analysed

Answer:

Sequential Cognitive Diagnosis Model

41

Table 8. Q_C-matrix for TIMSS 2007 data

			Attril	butes						
Item	TIMSS item no.	Category	A1	A2	A3	A4	A5	A6	A 7	A8
1	M041052	1	1	1	0	0	0	0	0	0
2	M041281	1	0	1	1	0	1	0	0	0
3a	M041275	1	1	0	0	0	0	1	0	1
3b	M041275	2	1	0	0	0	0	1	0	1
4	M031303	1	0	1	1	0	0	0	0	0
5	M031309	1	0	1	1	0	0	0	0	0
6	M031245	1	0	1	0	1	0	0	0	0
7a	M031242A	1	0	1	1	0	1	0	0	0
7b	M031242B	2	0	0	0	0	0	0	1	0
8	M031242C	1	0	1	1	0	1	0	1	0
9a	M031247	1	0	1	1	1	0	0	0	0
9b	M031247	2	0	1	1	1	0	0	0	0
10	M031173	1	0	1	1	0	0	0	0	0
11	M031172	1	1	1	0	0	0	1	0	1

Notes. Polytomous items are shown in bold. This Q_C-matrix is modified from Lee et al. (2011).

Sequential Cognitive Diagnosis Model

42

TADIC 9. Estimates of processing functions for Timos 2007 data	fable	stimates of processing functions for TIMSS 2	07 data	analysis
--	-------	--	---------	----------

	Category	Attribu	ite patter	m													
Item		0 00 000 0000	1 10 100 1000	01 010 0100	11 001 0010	110 0001	101 1100	011 1010	111 1001	0110	0101	0011	1110	1101	1011	0111	1111
1	1	.511	.941	.511	.999												
2	1	.260	.908	.444	.487	.908	.908	.617	.999								
3a	1	.002	.732	.999	.999	.999	.999	.999	.999								
3b	2	.013	.013	.540	.535	.999	.999	.999	.999								
4	1	.452	.868	.781	.973												
5	1	.122	.865	.305	.961												
6	1	.001	.001	.914	.999												
7a	1	.088	.621	.427	.854	.770	.899	.891	.955								
7b	2	.001	.999														
8	1	.257	.257	.377	.646	.347	.377	.999	.347	.988	.457	.646	.999	.718	.999	.999	.999
9a	1	.072	.145	.452	.072	.646	.145	.470	.646								
9b	2	.001	.645	.532	.532	.715	.762	.532	.762								
10	1	.095	.700	.761	.999												
11	1	.355	.835	.835	.355	.355	.835	.835	.835	.835	.835	.415	.835	.835	.835	.999	.999

Sequential Cognitive Diagnosis Model

43

Table 9. Estimates of processing functions for TIMSS 2007 data analysis

	Category	Attribu	ite patter	m													
Item		0 00 000 0000	1 10 100 1000	01 010 0100	11 001 0010	110 0001	101 1100	011 1010	111 1001	0110	0101	0011	1110	1101	1011	0111	1111
1	1	.511	.941	.511	.999					7							
2	1	.260	.908	.444	.487	.908	.908	.617	.999								
3a	1	.002	.732	.999	.999	.999	.999	.999	.999								
3b	2	.013	.013	.540	.535	.999	.999	.999	.999								
4	1	.452	.868	.781	.973												
5	1	.122	.865	.305	.961												
6	1	.001	.001	.914	.999												
7a	1	.088	.621	.427	.854	.770	.899	.891	.955								
7b	2	.001	.999														
8	1	.257	.257	.377	.646	.347	.377	.999	.347	.988	.457	.646	.999	.718	.999	.999	.999
9a	1	.072	.145	.452	.0/2	.646	.145	.4/0	.646								
9b	2	.001	.645	.532	.532	.715	.762	.532	.762								
10	1	.095	.700	.761	.999												
11	1	.355	.835	.835	.355	.355	.835	.835	.835	.835	.835	.415	.835	.835	.835	.999	.999

Sequential Cognitive Diagnosis Model

- Developed a new polytomous CDM for graded responses, the sequential G-DINA model.
- The sequential G-DINA model is also suitable for unordered categorical responses when the unrestricted Qc-matrix is used.
- The simulation study shows that the proposed estimation algorithm can produce accurate item and person parameter recovery.

Thanks for listening!

Yingshi Huang 2019/07/15

Sequential Cognitive Diagnosis Model