

APPLIED

April Ave 2019

Applied Measurement in Education

R Routindge

ISSN: 0895-7347 (Print) 1532-4818 (Online) Journal homepage: https://www.tandfonline.com/loi/hame20

Classification Consistency and Accuracy for Mixed-Format Tests

Stella Y. Kim & Won-Chan Lee 13 Mar 2019 IF: 1.043

Reporter: Yingshi Huang

Introduction

- Tests are administered for a variety of reasons:
	- to determine rank orders
	- to screen/select a certain group

fail **< 425 <** pass

- Classification consistency
- Classification accuracy

Mixed-format tests?

multiple-choice (MC) + free-response (FR)

VS

- provide a rich understanding of examinee performance
- demonstrate some level of multidimensionality

The impact of construct equivalence was **negligible** (Wan, Brennan, & Lee, 2007)

When the testlet effect is low, the unidimensional IRT method **outperformed** bi-factor MIRT \bullet classical models $\qquad \qquad \qquad \qquad \text{(Lafond, 2014)} \qquad \qquad \text{UIRT and MIRT}$

Impact of cut score location?

A cut score **near the mean or median** leads to **lower P** estimates (Huynh, 1976; Knupp, 2009; Lee, 2008; Wan et al., 2007)

As the number of classification **categories increases**, the CC and CA estimates tend to be **lower** (Berk, 1980; Feldt & Brennan, 1989; Lafond, 2014; Wan, 2006)

Present various estimation procedures

- classical test theory
- unidimensional item response theory (IRT)
- multidimensional IRT (MIRT)

Investigate the impact of multidimensionality

- real data
	- effects of dimensionality & impact of cut score location
- simulated data
	- sample size & degree of multidimensionality

Classification Consistency and Accuracy for Mixed-Format Tests

classical approaches

- normal approximation (Peng & Subkoviak, 1980)
- Livingston-Lewis (Livingston & Lewis, 1995)
- compound multinomial (Lee, 2008)

IRT approaches

- unidimensional IRT (Lee, 2010)
- simple-structure MIRT (Knupp, 2009)
- bi-factor MIRT (LaFond, 2014)

1. Normal Approximation Procedure

• Scores from parallel forms follow a **bivariate normal distribution** with a correlation equal to test reliability, *ρ*.

$$
f(y_1, y_2) = \frac{1}{2\pi\sigma_{y_1}\sigma_{y_2}\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)}\left[\left(\frac{y_1-\mu_{y_1}}{\sigma_{y_1}}\right)^2 - \frac{2\rho(y_1-\mu_{y_1})(y_2-\mu_{y_2})}{\sigma_{y_1}\sigma_{y_2}} + \left(\frac{y_2-\mu_{y_2}}{\sigma_{y_2}}\right)^2\right]\right)
$$

$$
f(y_1, y_2) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{y_1^2-2\rho y_1y_2+y_2^2}{2(1-\rho^2)}\right)
$$

$$
\left[c_{(j-1)}, c_j - 1\right] \to \text{category } U_j
$$

$$
z_{c_j} = \frac{c_j-\mu}{\sigma} \qquad z_{c_{(j-1)}} = \frac{c_{(j-1)}-\mu}{\sigma} \qquad (c_1, c_2, \dots, c_{j-1})
$$

Peng & Subkoviak, 1980 *JEM*

6

1. Normal Approximation Procedure

• Being classified into category U*^j* on two parallel forms with scores Y_1 and Y_2

1. Normal Approximation Procedure

• The true and observed scores follow a bivariate normal distribution with a correlation equal to the square root of reliability, $\sqrt{\rho}$.

$$
z_{\xi_{\eta}} = \frac{\xi_{\eta} - \mu}{\sqrt{\rho}\sigma} \quad (\xi_{\eta} = c_j \to z_{\xi_{\eta}} = \frac{z_{c_j}}{\sqrt{\rho}})
$$

\n
$$
\gamma = \sum_{\eta=j=1}^{J} \Phi_2(\tau \epsilon U_{\eta}, Y \epsilon U_j) = \int_{z_{c_{(j-1)}}}^{z_{c_j}} \int_{z_{\xi_{(\eta-1)}}}^{z_{\xi_{\eta}}} \frac{1}{2\pi\sqrt{1-\rho}} exp(-\frac{\tau^2 - 2\sqrt{\rho}\tau y + y^2}{2(1-\rho)}) d\tau dy
$$

Peng & Subkoviak, 1980 *JEM*

2. Livingston-Lewis Procedure

• True scores are assumed to take the form of either a **two- or fourparameter beta distribution**.

$$
f(\pi_i) = \frac{1}{B(\alpha, \beta)} * \frac{(\pi_i - a)^{\alpha - 1}(b - \pi_i)^{\beta - 1}}{(b - a)^{\alpha + \beta - 1}} \longrightarrow \text{proportion-correct score } (\pi) \text{ metric}
$$

the effective test length:
$$
\tilde{n} = \text{int}\left(\frac{(\mu - Y_{min})(Y_{max} - \mu) - \rho \sigma^2}{\sigma^2 (1 - \rho)}\right)
$$

two-term approximation to the compound binomial distribution

$$
P_r(Y = y | \pi_i) = {\tilde{n} \choose y} \pi_i y (1 - \pi_i)^{\tilde{n} - y} \qquad \Pr(Y \in U_j | \pi_i) = \sum_{y = c_{(j-1)}}^{c_j - 1} \Pr(Y = y | \pi_i)
$$

$$
[c_{(j-1)}, \overline{c_j} - 1] \to \text{category } U_j \qquad \text{Livingston & Lewis, 1995 JEM}
$$

2. Livingston-Lewis Procedure

• Due to the conditional independence assumption:

$$
\Pr(Y \in U_j | \pi_i) = \sum_{y=c_{(j-1)}}^{c_j-1} \Pr(Y = y | \pi_i)
$$
\nfor examine i

\n
$$
P_i = \sum_{j=1}^{J} \Pr(Y_1 \in U_j, Y_2 \in U_j | \pi_i) = \sum_{j=1}^{J} \Pr(Y_1 \in U_j | \pi_i) \Pr(Y_2 \in U_j | \pi_i)
$$
\n
$$
= \sum_{j=1}^{J} \left[\Pr(Y \in U_j | \pi_i) \right]^2.
$$
\nfor a group of examines

\n
$$
P = \int_0^1 P_i g(\pi) d\pi
$$
\nLiving the function π is a function of π and π is a function of π and π is a function of π for π and π is a function of π for π and π is a function of π for π and π is a function of π for π and π is a function of π for π and π is a function of π for π and π is a function of π for π and π for π and π is a function of π for π and π for $\$

Livingston & Lewis, 1995 *JEM*

2. Livingston-Lewis Procedure

• a similar approach

$$
\boxed{\Pr(Y \in U_j | \pi_i)} = \sum_{y=c_{(j-1)}}^{c_j-1} \Pr(Y = y | \pi_i)
$$
\nfor examine i

\n
$$
\gamma_i = \Pr(Y \in U_j | \pi_i \in U_{\eta_i}) = \frac{\Pr(Y \in U_j | \pi_i)}{\Pr(Y \in U_j | \pi_i)}, \text{ for } \eta_i = j
$$
\nfor a group of examines

\n
$$
\gamma = \int_0^1 \gamma_i g(\pi) d\pi
$$

$$
P_r(Y = y | true score)
$$
\n

$P_r(Y \in U_j true score)$
$P_r(Y \in U_j true score)$
$P \& \gamma$

11

Livingston & Lewis, 1995 *JEM*

3. Compound Multinomial Procedure

$$
P_r(Y = y | \text{true score})
$$

- item cluster:
	- **the same number of score categories** or **the same sub-content area**

$$
\pi_{MC} = {\pi_1, \pi_2}, \ \pi_1 + \pi_2 = 1, \n\pi_{FR} = {\pi_1, \pi_2, \dots \pi_k}, \ \pi_1 + \pi_2 + \dots + \pi_k = 1.
$$

Under the assumption of **uncorrelated** errors over the two item-format sections

$$
Pr(Y = y | \pi_{MCi}, \pi_{FRi}) = \sum_{\text{at~the~all~possible~combinations of~}W_{MC}X_{MC}} Pr(X_{MC} = x_{MC} | \pi_{MCi}) Pr(X_{FR} = x_{FR} | \pi_{FRi})
$$
\n
$$
E_{\text{eq. 2008 CASMA Research Report}} \text{E}_{\text{eq. 2008 CASMA Research Report}}
$$

3. Compound Multinomial Procedure

$$
Pr(Y = y | \pi_{MC_i}, \pi_{FR_i}) = \sum Pr(X_{MC} = x_{MC} | \pi_{MC_i}) Pr(X_{FR} = x_{FR} | \pi_{FR_i})
$$
\n
$$
P_r(Y \in U_j | \pi_{MC_i}, \pi_{FR_i})
$$
\n
$$
P_i = \sum_{j=1}^{J} Pr(Y_1 \in U_j, Y_2 \in U_j | \pi_{MC_i}, \pi_{FR_i}) = \sum_{j=1}^{J} [Pr(Y \in U_j | \pi_{MC_i}, \pi_{FR_i})]^2
$$
\n
$$
\gamma_i = P_r(Y \in U_j | \overline{\pi_{MC_i}, \pi_{FR_i}}) \rightarrow \text{equivalent to his/her actual classification based on the observed score take the average of the conditional (individual) estimates}
$$
\n
$$
P = \sum_{i=1}^{N} P_i / N \qquad \gamma = \sum_{i=1}^{N} \gamma_i / N \qquad \text{Lee, 2008 CASMA Research Report}
$$

Lee, Brennan, & Wan, 2009 *APM*

4. Unidimensional IRT Procedure

$$
P_r(Y = y | true score)
$$

$$
w_{mc}x_{mc}
$$
 and
$$
w_{FR}x_{FR}
$$

computed separately

$$
Pr(Y = y | \theta) = \sum Pr(X_{MC} = x_{MC} | \theta) Pr(X_{FR} = x_{FR} | \theta)
$$

\n
$$
P_i = \sum_{j=1}^{J} P_r(Y_1 \in U_j, Y_2 \in U_j | \theta) = \sum_{j=1}^{J} [P_r(Y \in U_j | \theta)]^2 \qquad P = \int_{-\infty}^{\infty} P_i h(\theta) d(\theta)
$$

\n
$$
\gamma_i = P_r(Y \in U_j | \theta) \qquad \gamma = \int_{-\infty}^{\infty} \gamma_i h(\theta) d(\theta)
$$

\nLee, 2010 JEM

5. Simple-Structure MIRT Procedure

$$
P_r(Y = y | true score) \rightarrow \theta_{MC} \text{ and } \theta_{FR} \text{ (allowed to be correlated)}
$$

Pr(Y = y | θ_{MC}, θ_{FR}) = \sum Pr(X_{MC} = x_{MC}| θ_{MC}) Pr(X_{FR} = x_{FR}| θ_{FR})

6. Bi-Factor MIRT Procedure

$$
\theta_g
$$
 general ability\n
$$
P_r(Y = y | \text{true score}) \rightarrow \theta_{MC}
$$
\n(zero correlations)\n
$$
Pr(Y = y | \theta_g, \theta_{MC}, \theta_{FR}) = \sum Pr(X_{MC} = x_{MC} | \theta_g, \theta_{MC}) Pr(X_{FR} = x_{FR} | \theta_g, \theta_{FR})
$$

Knupp, 2009 *Unpublished doctoral dissertation* LaFond, 2014 *Unpublished doctoral dissertation*

 $\sqrt{x_1}$ $\sqrt{x_2}$ $\sqrt{x_3}$ $\sqrt{x_4}$ $\sqrt{x_5}$

Real Data Analysis

Table 1. Test information and sample sizes.

					A	B C	E D
					52 $\mathbf 0$	73 95	113 130
Table 2. Descriptive statistics and cut score information.							
Exam	Mean	SD	Kurt.	Skew.	Rel.	$\boldsymbol{\mu}_{\boldsymbol{\theta}_{\textit{MC}}\boldsymbol{\theta}_{\textit{FR}}}$	Cut Score
German	90.911	25.502	2.382	$-.390$.93797	.94	52, 73, 95, 113
Chemistry	44.443	19.598	2.162	.240	.92818	.97	27, 42, 58, 72
French	84.358	22.457	2.606	$-.298$.91807	.92	44, 66, 88, 106
U.S. History	85.479	26.169	2.548	$-.022$.91065	.89	59, 82, 97, 118
Biology	67.200	21.232	2.352	$-.238$.88863	.96	33, 55, 76, 94
English	80.254	20.248	2.865	$-.204$.82897	.75	54, 75, 91, 105
Spanish	93.484	18.758	3.637	$-.724$.82014	87	43, 68, 90, 107

Results

• Comparison of Estimation Procedures (multilevel classification)

• Effects of Dimensionality (item-format effects)

• Impact of Cut Score Location

Chemistry (Score range: 0-100)

Composite Score

Spanish and German: negatively skewed distribution

Cut Score Exam Mean **SD** Kurt. Skew. Rel. $\rho_{\theta_{MC}\theta_{FR}}$.94 $-.390$.93797 German 90.911 25.502 2.382 52, 73, 95, 113 44.443 19.598 2.162 $.240$.92818 .97 Chemistry 27, 42, 58, 72 84.358 22.457 2.606 $-.298$.91807 $.92$ 44, 66, 88, 106 French U.S. History 85.479 26.169 2.548 $-.022$.91065 .89 59, 82, 97, 118 $-.238$ **Biology** 67.200 21.232 2.352 .88863 .96 33, 55, 76, 94 $-.204$.75 **English** 80.254 20.248 2.865 .82897 54, 75, 91, 105 93.484 18.758 3.637 $-.724$.82014 .87 Spanish 43, 68, 90, 107

Chemistry:

positively skewed distribution

• Impact of Cut Score Location

P estimates for binary classifications.

• Impact of Cut Score Location

 y estimates for binary classifications.

Simulated Data Analysis

- Using the **simple-structure MIRT** model
- In the **item pool**, there were 657 MC items and 14 FR items scored 0–10

(3PLM)

(GRM)

- − 90 MC : scored 0–1
- − 3 FR : scored 0–10
- − Section weights of 1:3, score range of 0–180
- Four **cut scores**: 59, 82, 97, 118
- Manipulated variables
	- − degree of multidimensionality: $\widehat{\rho}_{\theta_{MC} \theta_{FR}}$ = 0.80 or 0.95
	- − sample size: *N* = 500 or 3000

Criterion classification indexes (*β*)

- repeated **100 times**
- the criterion **classification consistency**:
	- \checkmark the average of classification consistency values
- the criterion **classification accuracy**:
	- \checkmark based on their true score and observed score for only one form
	- \checkmark the average of classification accuracy values
- random error:

$$
SE(\beta) = \sqrt{\frac{1}{R} \sum_{r}^{R} (\hat{\beta}_r - \overline{\hat{\beta}})^2}
$$

- systematic error: $ABS(\beta) = |\overline{\hat{\beta}} \beta|$
	- overall error: $RMSE(\beta) = \sqrt{\frac{1}{R}\sum_{r}^{R} (\hat{\beta}_r - \beta)^2} = \sqrt{SE(\beta)^2 + ABS(\beta)^2}$

Results for *P*

• Comparison of Estimation Procedures (multilevel classification)

• Comparison of Estimation Procedures (multilevel classification)

• Correlation Between MC and FR Scores (multidimensionality)

• Sample Size

• Cut Score Location (binary classifications)

Discussion

- real data
	- − All of the classical and IRT procedures show **similar patterns** across different exams.
	- − The shape of the observed-score distribution influences classification indices while **interacting with** the position of the cut score.
	- − As data become more multidimensional, unidimensional IRT yielding **lower** *P* **and** *γ* estimates than MIRT.
- simulated data
	- − The largest SE was associated with **LL**, followed by the compound multinomial method.
	- − The **compound multinomial procedure** and unidimensional IRT resulted in the largest bias.
	- − Unidimensional IRT revealed **larger error** than bi-factor MIRT and simple-structure MIRT.

Limitations

- **Generalization** of the results is somehow limited.
- The criterion established for the simulation study might **favor the generating model**.
- It would be worth exploring some other models such as **full MIRT models**.

Thanks for listening!

Yingshi Huang 2020/04/15