

APPLIED

April Acre 2018

Applied Measurement in Education

Routledge

ISSN: 0895-7347 (Print) 1532-4818 (Online) Journal homepage: <u>https://www.tandfonline.com/loi/hame20</u>

Classification Consistency and Accuracy for Mixed-Format Tests

Stella Y. Kim & Won-Chan Lee 13 Mar 2019 IF: 1.043

Reporter: Yingshi Huang

Introduction

- Tests are administered for a variety of reasons:
 - to determine rank orders
 - to screen/select a certain group

fail < **425** < pass

- Classification consistency
- Classification accuracy

Mixed-format tests ?

multiple-choice (MC) + free-response (FR)

VS

- provide a rich understanding of examinee performance
- demonstrate some level of multidimensionality

The impact of construct equivalence was **negligible** (Wan, Brennan, & Lee, 2007)

classical models

When the testlet effect is low, the unidimensional IRT method **outperformed** bi-factor MIRT (Lafond, 2014) UIRT and MIRT

Impact of cut score location?

A cut score **near the mean or median** leads to **lower P** estimates (Huynh, 1976; Knupp, 2009; Lee, 2008; Wan et al., 2007) As the number of classification categories increases, the CC and CA estimates tend to be **lower** (Berk, 1980; Feldt & Brennan, 1989; Lafond, 2014; Wan, 2006)

Present various estimation procedures

- classical test theory
- unidimensional item response theory (IRT)
- multidimensional IRT (MIRT)

Investigate the impact of multidimensionality

- real data
 - effects of dimensionality & impact of cut score location
- simulated data
 - sample size & degree of multidimensionality

Classification Consistency and Accuracy for Mixed-Format Tests

classical approaches

- normal approximation (Peng & Subkoviak, 1980)
- Livingston-Lewis (Livingston & Lewis, 1995)
- compound multinomial (Lee, 2008)

IRT approaches

- unidimensional IRT (Lee, 2010)
- simple-structure MIRT (Knupp, 2009)
- bi-factor MIRT (LaFond, 2014)

1. Normal Approximation Procedure

 Scores from parallel forms follow a bivariate normal distribution with a correlation equal to test reliability, ρ.

$$f(y_{1}, y_{2}) = \frac{1}{2\pi\sigma_{y_{1}}\sigma_{y_{2}}\sqrt{1-\rho^{2}}} \exp\left(-\frac{1}{2(1-\rho^{2})}\left[\left(\frac{y_{1}-\mu_{y_{1}}}{\sigma_{y_{1}}}\right)^{2} - \frac{2\rho(y_{1}-\mu_{y_{1}})(y_{2}-\mu_{y_{2}})}{\sigma_{y_{1}}\sigma_{y_{2}}}\right] + \left(\frac{y_{2}-\mu_{y_{2}}}{\sigma_{y_{2}}}\right)^{2}\right]\right)$$

$$f(y_{1}, y_{2}) = \frac{1}{2\pi\sqrt{1-\rho^{2}}} \exp\left(-\frac{y_{1}^{2}-2\rho y_{1}y_{2}+y_{2}^{2}}{2(1-\rho^{2})}\right)$$

$$\left[c_{(j-1)}, c_{j} - 1\right] \rightarrow \text{category } U_{j}$$

$$z_{c_{j}} = \frac{c_{j} - \mu}{\sigma} \qquad z_{c_{(j-1)}} = \frac{c_{(j-1)} - \mu}{\sigma} \qquad (c_{1}, c_{2}, \dots c_{j-1})$$

Peng & Subkoviak, 1980 JEM

1. Normal Approximation Procedure

- Being classified into category U_{j} on two parallel forms with scores Y_{1} and Y_{2}

1. Normal Approximation Procedure

• The true and observed scores follow a bivariate normal distribution with a correlation equal to the square root of reliability, $\sqrt{\rho}$.

$$z_{\xi_{\eta}} = \frac{\xi_{\eta} - \mu}{\sqrt{\rho}\sigma} \quad (\xi_{\eta} = c_j \rightarrow z_{\xi_{\eta}} = \frac{z_{c_j}}{\sqrt{\rho}})$$

$$summed \ \text{score} \ (\tau) \ \text{metric}$$

$$\gamma = \sum_{\eta=j=1}^{J} \Phi_2(\tau \epsilon U_{\eta}, Y \epsilon U_j) = \int_{z_{c_{(j-1)}}}^{z_{c_j}} \int_{z_{\xi_{(\eta-1)}}}^{z_{\xi_{\eta}}} \frac{1}{2\pi\sqrt{1-\rho}} exp(-\frac{\tau^2 - 2\sqrt{\rho}\tau y + y^2}{2(1-\rho)}) d\tau dy$$

Peng & Subkoviak, 1980 JEM

2. Livingston-Lewis Procedure

 True scores are assumed to take the form of either a two- or fourparameter beta distribution.

$$f(\pi_i) = \frac{1}{B(\alpha, \beta)} * \frac{(\pi_i - a)^{\alpha - 1}(b - \pi_i)^{\beta - 1}}{(b - a)^{\alpha + \beta - 1}} \longrightarrow \text{proportion-correct score } (\pi) \text{ metric}$$

the effective test length:
$$\tilde{n} = int \left(\frac{(\mu - Y_{min})(Y_{max} - \mu) - \rho \sigma^2}{\sigma^2 (1 - \rho)} \right)$$

two-term approximation to the compound binomial distribution

$$P_{r}(Y = y | \pi_{i}) = {\binom{\widetilde{n}}{y}} \pi_{i}^{y} (1 - \pi_{i})^{\widetilde{n} - y} \qquad \Pr(Y \in U_{j} | \pi_{i}) = \sum_{y = c_{(j-1)}}^{c_{j} - 1} \Pr(Y = y | \pi_{i})$$
$$[c_{(j-1)}, c_{j} - 1] \rightarrow \text{category } U_{j} \qquad \text{Livingston \& Lewis, 1995 } JEM$$

2. Livingston-Lewis Procedure

• Due to the conditional independence assumption:

$$\Pr(Y \in U_j | \pi_i) = \sum_{\substack{y=c_{(j-1)}\\y=c_{(j-1)}}}^{c_j-1} \Pr(Y = y | \pi_i)$$

for examinee *i*
$$P_i = \sum_{j=1}^{J} \Pr(Y_1 \in U_j, Y_2 \in U_j | \pi_i) = \sum_{j=1}^{J} \Pr(Y_1 \in U_j | \pi_i) \Pr(Y_2 \in U_j | \pi_i)$$

$$= \sum_{j=1}^{J} \left[\Pr(Y \in U_j | \pi_i) \right]^2.$$

for a group of examinees
$$P = \int_0^1 P_i g(\pi) \, d\pi$$

Livingsto

Livingston & Lewis, 1995 JEM

2. Livingston-Lewis Procedure

• a similar approach

$$\Pr(Y \in U_j | \pi_i) = \sum_{\substack{y = c_{(j-1)}}}^{c_j - 1} \Pr(Y = y | \pi_i)$$

for examinee *i*
$$\gamma_i = \Pr(Y \in U_j | \pi_i \in U_{\eta_i}) = \Pr(Y \in U_j | \pi_i), \text{ for } \eta_i = j$$

for a group of examinees
$$\gamma = \int_0^1 \gamma_i \ g(\pi) d\pi$$

$$P_{r}(Y = y | \text{true score})$$

$$P_{r}(Y \in U_{j} | \text{true score})$$

$$P \otimes \gamma$$

Livingston & Lewis, 1995 JEM

3. Compound Multinomial Procedure

$$P_r(Y = y | \text{true score})$$

- item cluster:
 - the same number of score categories or the same sub-content area

$$\pi_{MC} = \{\pi_1, \pi_2\}, \ \pi_1 + \pi_2 = 1, \\ \pi_{FR} = \{\pi_1, \pi_2, \dots \pi_k\}, \ \pi_1 + \pi_2 + \dots + \pi_k = 1.$$

Under the assumption of **uncorrelated** errors over the two item-format sections

$$\Pr(Y = y | \pi_{MCi}, \pi_{FRi}) = \sum_{i} \Pr(X_{MC} = x_{MC} | \pi_{MCi}) \Pr(X_{FR} = x_{FR} | \pi_{FRi})$$
Lee, 2008 CASMA Research Report
all possible combinations of $w_{MC} X_{MC}$ and $w_{FR} X_{FR}$
Lee, Brennan, & Wan, 2009 APM

3. Compound Multinomial Procedure

$$\Pr(Y = y | \pi_{MCi}, \pi_{FRi}) = \sum \Pr(X_{MC} = x_{MC} | \pi_{MCi}) \Pr(X_{FR} = x_{FR} | \pi_{FRi})$$

$$\Pr(Y \in U_j | \pi_{MCi}, \pi_{FRi})$$

$$P_i = \sum_{j=1}^{J} \Pr(Y_1 \in U_j, Y_2 \in U_j | \pi_{MCi}, \pi_{FRi}) = \sum_{j=1}^{J} \left[\Pr(Y \in U_j | \pi_{MCi}, \pi_{FRi})\right]^2$$

$$\gamma_i = \Pr(Y \in U_j | \pi_{MCi}, \pi_{FRi}) \rightarrow \text{ equivalent to his/her actual classification based on the observed score}$$

$$\lim_{k \to k} \text{ take the average of the conditional (individual) estimates}$$

$$P = \sum_{i=1}^{N} \frac{P_i / N}{\gamma_i - \gamma_i / N}$$

$$\underset{k \to k}{=} \frac{1}{2} \sum_{i=1}^{N} \frac{P_i / N}{\gamma_i - \gamma_i / N}$$

$$\underset{k \to k}{=} \frac{1}{2} \sum_{i=1}^{N} \frac{P_i / N}{\gamma_i - \gamma_i / N}$$

Lee, Brennan, & Wan, 2009 APM

4. Unidimensional IRT Procedure

$$P_{r}(Y = y | \text{true score}) \rightarrow \theta$$

$$w_{MC}X_{MC} \text{ and } w_{FR}X_{FR}$$

computed separately

5. Simple-Structure MIRT Procedure

$$P_{r}(Y = y | \text{true score}) \rightarrow \theta_{MC} \text{ and } \theta_{FR} \text{ (allowed to be correlated)}$$

$$Pr(Y = y | \theta_{MC}, \theta_{FR} \text{)} = \sum Pr(X_{MC} = x_{MC} | \theta_{MC}) Pr(X_{FR} = x_{FR} | \theta_{FR})$$

6. Bi-Factor MIRT Procedure

$$P_{r}(Y = y | \text{true score}) \xrightarrow{\theta_{g} \text{ general ability}}_{\theta_{MC} \text{ and } \theta_{FR}} \xrightarrow{\theta_{MC} \text{ and } \theta_{FR}}_{(\text{zero correlations })}$$

$$\Pr(Y = y | \theta_{g}, \theta_{MC}, \theta_{FR}) = \sum \Pr(X_{MC} = x_{MC} | \theta_{g}, \theta_{MC}) \Pr(X_{FR} = x_{FR} | \theta_{g}, \theta_{FR})$$

Knupp, 2009 Unpublished doctoral dissertation LaFond, 2014 Unpublished doctoral dissertation

 x_1 x_2 x_3 x_4

Real Data Analysis

Exam	Section	# of Items	Score Points	Section Weights	Score Range	n
German	MC	65	65	1.00	0–130	4,283
	FR	4	5, 5, 5, 5	3.25		
Chemistry	MC	50	50	1.00	0-100	17,969
	FR	7	10, 10, 10, 4, 4, 4, 4	1.0869		
French	MC	65	65	1.0344	0–130	17,067
	FR	4	5, 5, 5, 5	3.25		
U.S. History	MC	80	80	1.125	0-180	17,239
-	FR	3	9, 9, 9	3.33		
Biology	MC	58	58	1.00	0-120	9,911
	FR	8	1 0, 10	1.5		
			4, 4, 4, 3, 3, 3	1.4285		
English	MC	55	55	1.2272	0-150	15,541
-	FR	3	9, 9, 9	3.0556		
Spanish	MC	65	65	1.00	0-130	16,459
-	FR	4	5, 5, 5, 5	3.25		

Table 1. Test information and sample sizes.

					A B C D E		
					0 52	73 95	113 130
						×	
Table 2. Descripti	ve statistics and	d cut score info	rmation.				
Exam	Mean	SD	Kurt.	Skew.	Rel.	$\hat{\rho}_{\theta_{MC}\theta_{FR}}$	Cut Score
German	90.911	25.502	2.382	390	.93797	.94	52, 73, 95, 113
Chemistry	44.443	19.598	2.162	.240	.92818	.97	27, 42, 58, 72
French	84.358	22.457	2.606	298	.91807	.92	44, 66, 88, 106
U.S. History	85.479	26.169	2.548	022	.91065	.89	59, 82, 97, 118
Biology	67.200	21.232	2.352	238	.88863	.96	33, 55, 76, 94
English	80.254	20.248	2.865	204	.82897	.75	54, 75, 91, 105
Spanish	93.484	18.758	3.637	724	.82014	.87	43, 68, 90, 107

Results

• Comparison of Estimation Procedures (multilevel classification)

• Effects of Dimensionality (item-format effects)

Impact of Cut Score Location

Chemistry (Score range: 0-100)

0.03

0

Cut1 Cut2 Cut3 Cut4

Spanish and German: negatively skewed distribution

Cut Score Exam Mean SD Kurt. Skew. Rel. $\hat{ ho}_{ heta_{MC} heta_{FR}}$.94 -.390 .93797 German 90.911 25.502 2.382 52, 73, 95, 113 44.443 19.598 2.162 .240 .92818 .97 Chemistry 27, 42, 58, 72 84.358 22.457 2.606 -.298 .91807 .92 44, 66, 88, 106 French U.S. History 85.479 26.169 2.548 -.022 .91065 .89 59, 82, 97, 118 -.238 Biology 67.200 21.232 2.352 .88863 .96 33, 55, 76, 94 -.204 .75 English 80.254 20.248 2.865 .82897 54, 75, 91, 105 93.484 18.758 3.637 -.724 .82014 .87 Spanish 43, 68, 90, 107

Chemistry:

positively skewed distribution

Impact of Cut Score Location

P estimates for binary classifications.

Impact of Cut Score Location

γ estimates for binary classifications.

Simulated Data Analysis

- Using the simple-structure MIRT model
- In the item pool, there were 657 MC items and 14 FR items scored 0–10

(3PLM)

(GRM)

- 90 MC : scored 0-1
- 3 FR : scored 0–10
- Section weights of 1:3, score range of 0–180
- Four cut scores: 59, 82, 97, 118
- Manipulated variables
 - degree of multidimensionality: $\hat{\rho}_{\theta_{MC}\theta_{FR}} = 0.80$ or 0.95
 - sample size: *N* = 500 or 3000

Criterion classification indexes (β)

- repeated 100 times
- the criterion classification consistency:
 - ✓ the average of classification consistency values
- the criterion classification accuracy:
 - ✓ based on their true score and observed score for only one form
 - ✓ the average of classification accuracy values
- <u>random error</u>:

$$SE(\beta) = \sqrt{\frac{1}{R}\sum_{r}^{R} \left(\hat{\beta}_{r} - \overline{\hat{\beta}}\right)^{2}}$$

- <u>systematic error</u>: $ABS(\beta) = \left|\overline{\hat{\beta}} \beta\right|$
 - <u>overall error</u>: $RMSE(\beta) = \sqrt{\frac{1}{R} \sum_{r}^{R} (\hat{\beta}_{r} - \beta)^{2}} = \sqrt{SE(\beta)^{2} + ABS(\beta)^{2}}$

Results for *P*

• Comparison of Estimation Procedures (multilevel classification)

• Comparison of Estimation Procedures (multilevel classification)

Correlation Between MC and FR Scores (multidimensionality)

• Sample Size

• Cut Score Location (binary classifications)

Discussion

- real data
 - All of the classical and IRT procedures show similar patterns across different exams.
 - The shape of the observed-score distribution influences classification indices while interacting with the position of the cut score.
 - As data become more multidimensional, unidimensional IRT yielding lower *P* and *y* estimates than MIRT.
- simulated data
 - The largest SE was associated with LL, followed by the compound multinomial method.
 - The compound multinomial procedure and unidimensional IRT resulted in the largest bias.
 - Unidimensional IRT revealed larger error than bi-factor MIRT and simple-structure MIRT.

Limitations

- Generalization of the results is somehow limited.
- The criterion established for the simulation study might favor the generating model.
- It would be worth exploring some other models such as full MIRT models.

Thanks for listening!

Yingshi Huang 2020/04/15