

Journal of Educational Measurement Winter 2015, Vol. 52, No. 4, pp. 457–476

Attribute-Level and Pattern-Level Classification Consistency and Accuracy Indices for Cognitive Diagnostic Assessment

Wenyi Wang, Lihong Song, Ping Chen, Yaru Meng, Shuliang Ding 01 December 2015 IF: 0.938

Reporter: Yingshi Huang

Introduction

• Cognitive diagnostic assessment (CDA)

```
reliability of diagnostic scores?
```

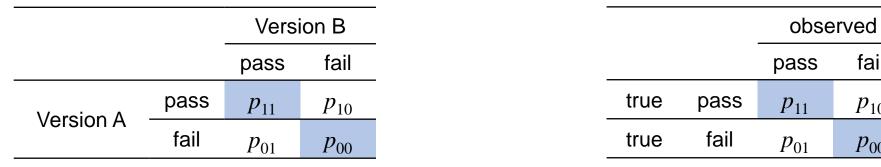
criterion-referenced tests

classification consistency and accuracy indices for CDA

Cui, (2012)
Gierl, & Chang :
$$P_c \& P_a$$

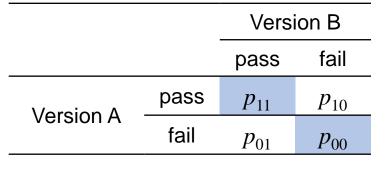
1. at the whole-pattern level
2. difficult to calculate

find a new method to estimate these indices to cater to any test, not only at the pattern level but also at the attribute level


Classification Accuracy (CA)

fail

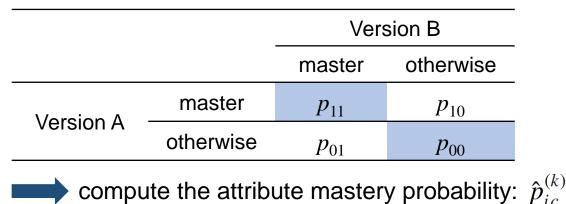
 p_{10}


 p_{00}

- Criterion-referenced test: <u>score/ability</u> ullet
 - Classification Consistency (CC) _

compute the expected probability of scoring in each category C: \hat{p}_{iC}

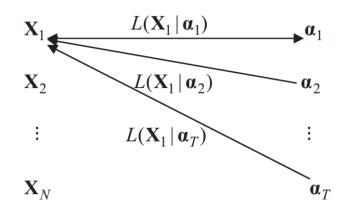
- Criterion-referenced test: <u>score/ability</u>
 - Classification Consistency (CC)



- Classification Accuracy (CA)

		obse	erved
		pass	fail
true	pass	<i>p</i> ₁₁	p_{10}
true	fail	p_{01}	p_{00}

compute the expected probability of scoring in each category C: \hat{p}_{iC}

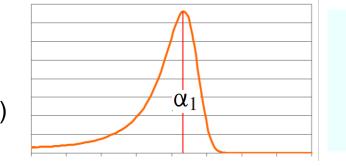

- Cognitive diagnostic assessment: <u>pattern/attribute</u>
 - Classification Consistency (CC)

Classification Accuracy (CA)

	obs	erved
	master	otherwise
master	p_{11}	p_{10}
otherwise	p_{01}	p_{00}
		master p_{11}

- **Objective:** the probability that an examinee has (not) mastered the attribute k $\hat{\mathbf{P}}_{N\times 2}^{(k)} = (\hat{p}_{ic}^{(k)}) = P(\alpha_c | \mathbf{X}_i)$
- Under the assumption of local independence $L(\mathbf{X_i}|\alpha_i) = P(\mathbf{X_i} = \mathbf{x}_i | \alpha_i) = \prod_{j=1}^{M} P_j(\alpha_i)^{x_{ij}} (1 - P_j(\alpha_i))^{1 - x_{ij}}$ $P(\alpha_c | \mathbf{X_i}) \propto L(\mathbf{X_i} | \alpha_c) p(\alpha_c)$ $P_j(\alpha_i) = P(X_{ij} = 1 | \alpha_i, \mathbf{q}_j, \beta_j)$

- **Objective:** the probability that an examinee has (not) mastered the attribute k $\hat{\mathbf{P}}_{N\times 2}^{(k)} = (\hat{p}_{ic}^{(k)}) = P(\alpha_c | \mathbf{X}_i)$
- Under the assumption of local independence


$$L(\mathbf{X}_{\mathbf{i}}|\alpha_{\mathbf{i}}) = P(\mathbf{X}_{\mathbf{i}} = \mathbf{x}_{i}|\alpha_{\mathbf{i}}) = \prod_{j=1}^{M} P_{j}(\alpha_{\mathbf{i}})^{x_{ij}}(1 - P_{j}(\alpha_{\mathbf{i}}))^{1-x_{ij}}$$

$$P(\alpha_{\mathbf{c}}|\mathbf{X}_{\mathbf{i}}) \propto L(\mathbf{X}_{\mathbf{i}}|\alpha_{\mathbf{c}})p(\alpha_{\mathbf{c}})$$

$$P_{j}(\alpha_{\mathbf{i}}) = P(X_{ij} = 1|\alpha_{\mathbf{i}}, \mathbf{q}_{j}, \beta_{j})$$

- maximum a posteriori (MAP) $\hat{\alpha}_{i} = \arg \max_{\alpha_{c} \in Q_{s}} [P(\alpha_{c}|\mathbf{X}_{i})]$
- marginal posterior probability (MPP)

$$\hat{p}_{ik} = \sum_{\alpha_c \in \mathbf{Q}_s} P(\alpha_c | \mathbf{X}_i) \mathbf{I}(\alpha_{ck} = 1)$$

$$mp_{k} = \sum_{t=1}^{2^{K}} P(\alpha_{tk} = 1 | X_{i})$$

$$\hat{\alpha}_{ik} = \begin{cases} 1, 如果mp_{k} 大于等于cutscore \\ 0, 如果mp_{k} 小于cutscore \end{cases} \quad k = 1, 2, ..., K$$

Attribute- and Pattern-Level CA

• to flag the status of the examinee on attribute

$$\mathbf{W} = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1C} \\ w_{21} & w_{22} & \cdots & w_{2C} \\ \vdots & \vdots & \ddots & \vdots \\ w_{N \ 1} & w_{N \ 2} & \cdots & w_{N \ C} \end{bmatrix}$$

• Attribute-Level

$$\hat{\mathbf{W}}_{N\times 2}^{(k)} \colon \hat{W}_{i}^{(k)} = (\mathbf{I}(\hat{\alpha}_{ik} = 0), \mathbf{I}(\hat{\alpha}_{ik} = 1))$$
$$\hat{\mathbf{P}}_{N\times 2}^{(k)} \colon \hat{\mathbf{P}}_{i}^{(k)} = (1 - \hat{p}_{ik}, \hat{p}_{ik})$$
$$\hat{\tau}_{k} = \frac{\sum_{i} \sum_{c} \left(\mathbf{P}_{N\times 2}^{(k)} \cdot \ast \mathbf{W}_{N\times 2}^{(k)} \right)}{N}$$

- examinee (i = 1) $\hat{p}_{1k} = 0.85$ $\hat{W}_1^{(k)} = (0, 1)$ $\hat{P}_1^{(k)} = (1 - \hat{p}_{1k}, \hat{p}_{1k}) = (.15, .85)$
- examinee (i = 2) $\hat{p}_{2k} = 0.2$ $\hat{W}_2^{(k)} = (1, 0)$ $\hat{P}_2^{(k)} = (1 - \hat{p}_{2k}, \hat{p}_{2k}) = (0.8, 0.2)$ - $\hat{\tau}_k = (\hat{p}_{1k} + 1 - \hat{p}_{2k})/2 = .825$

Attribute- and Pattern-Level CA

1))

• to flag the status of the examinee on attribute

$$\mathbf{W} = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1C} \\ w_{21} & w_{22} & \cdots & w_{2C} \\ \vdots & \vdots & \ddots & \vdots \\ w_{N \ 1} & w_{N \ 2} & \cdots & w_{N \ C} \end{bmatrix}$$

• Attribute-Level

$$\hat{\mathbf{W}}_{N\times 2}^{(k)} \colon \hat{W}_{i}^{(k)} = (\mathbf{I}(\hat{\alpha}_{ik} = 0), \mathbf{I}(\hat{\alpha}_{ik} = \mathbf{P}_{ik}^{(k)})$$
$$\hat{\mathbf{P}}_{N\times 2}^{(k)} \coloneqq \hat{\mathbf{P}}_{i}^{(k)} = (1 - \hat{p}_{ik}, \hat{p}_{ik})$$
$$\hat{\tau}_{k} = \frac{\sum_{i} \sum_{c} \left(\mathbf{P}_{N\times 2}^{(k)} \cdot \ast \mathbf{W}_{N\times 2}^{(k)} \right)}{N}$$

- MAP method

$$\hat{\tau}_i = \sum_c (\hat{p}_{ic} * \hat{w}_{ic}) = \max(\hat{\mathbf{P}}_i)$$

 $\hat{\tau} = \sum_i \hat{\tau}_i / N$

• Pattern-Level $\hat{\mathbf{W}}_{N \times T}$: $\hat{W}_i = (\mathbf{I}(\hat{\alpha}_i = \alpha_c))$ $\hat{\mathbf{P}}_{N \times T}$: $\hat{\mathbf{P}}_i = (\hat{p}_{ic}) = (P(\alpha_c | \mathbf{X}_i))$ $\hat{\tau} = \frac{\sum_i \sum_c \left(\hat{\mathbf{P}}_{N \times T} \cdot * \hat{\mathbf{W}}_{N \times T} \right)}{N}$

Attribute- and Pattern-Level CC

• Attribute-Level

$$\hat{\mathbf{P}}_{N\times 2}^{(k)}: \quad \hat{\mathbf{P}}_{i}^{(k)} = (1 - \hat{p}_{ik}, \, \hat{p}_{ik})$$
$$\hat{\gamma}_{k} = \frac{\sum_{i} \sum_{c} \left(\mathbf{P}_{N\times 2}^{(k)} \cdot \ast \mathbf{P}_{N\times 2}^{(k)} \right)}{N}$$

• Pattern-Level

$$\hat{\mathbf{P}}_{N \times T} \colon \ \hat{\mathbf{P}}_{i} = (\hat{p}_{ic}) = (P(\alpha_{c} | \mathbf{X}_{i}))$$
$$\sum \sum \left(\hat{\mathbf{P}}_{N \times T} \cdot \ast \hat{\mathbf{P}}_{N \times T} \right)$$

$$\hat{\gamma} = \frac{\sum_{i} \sum_{c} \left(-N \times I + N \times I\right)}{N}$$

 the marginal posterior probabilities of an attribute k being mastered on either test are identical

$$\hat{p}_{ik}^{(1)} = \hat{p}_{ik}^{(2)}$$

 $\hat{p}_{ik} = 0.8$
 $\hat{\gamma}_{ik} = 0.2 \times 0.2 + 0.8 \times 0.8$

		Vers	sion B
		master	otherwise
Varaian A	master	p_{11}	p_{10}
Version A	otherwise	p_{01}	p_{00}

Relationships Among the Variance of Error and Accuracy

the variance of error

$$- \hat{\sigma}_{ek}^{2} = \sum_{i=1}^{N} \hat{p}_{ik} (1 - \hat{p}_{ik}) / N$$

$$= \sum_{i=1}^{N} \hat{p}_{ik} / N - \sum_{i=1}^{N} \hat{p}_{ik}^{2} / N = \hat{\tau}_{k} - \sum_{i=1}^{N} \hat{p}_{ik}^{2} / N$$

$$\hat{\tau}_{k} = \frac{\sum_{i=1}^{N} \sum_{c} \left(\mathbf{P}_{N \times 2}^{(k)} \cdot * \mathbf{W}_{N \times 2}^{(k)} \right)}{N}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \hat{p}_{ik}$$

- the Cauchy-Schwarz inequality

$$\left(\sum_{i=1}^{N} (1/N)^{2}\right) \left(\sum_{i=1}^{N} \hat{p}_{ik}^{2}\right) \geq \left(\sum_{i=1}^{N} \frac{1}{N} \hat{p}_{ik}\right)^{2}$$
$$\sum_{i=1}^{N} \hat{p}_{ik}^{2}/N \geq \hat{\tau}_{k}^{2}$$
$$-\sum_{i=1}^{N} \hat{p}_{ik}^{2}/N \leq -\hat{\tau}_{k}^{2}$$
$$\hat{\tau}_{k} - \sum_{i=1}^{N} \hat{p}_{ik}^{2}/N \leq \hat{\tau}_{k} - \hat{\tau}_{k}^{2}$$
$$\sigma_{ek}^{2} \leq \hat{\tau}_{k}(1 - \hat{\tau}_{k})$$
$$\underbrace{1 - \sqrt{1 - 4\hat{\sigma}_{ek}^{2}}}_{2} \leq \hat{\tau}_{k} \leq \frac{1 + \sqrt{1 - 4\hat{\sigma}_{ek}^{2}}}{2}$$

An Alternative Approach to Constructing Attribute-Level Indices

Can Cui's pattern-level indices be generalized to the attribute level?

- Latent class C_h : is similar to an equivalent class of **AMPs** $\alpha_c \rightarrow (\alpha_1, \alpha_2, \dots, \alpha_K)$ $C_h: h = 1, 2, \dots, H$
 - when the Q-matrix of the test is a complete (or necessary and sufficient) Q-matrix: $H = 2^{K}$

 $\mathbf{X} \in \pi_h$

- otherwise: $H < 2^K$
- π_h : all possible item response patterns that would be classified into C_h

• we have known:
$$P(\mathbf{X} = \mathbf{x} | \alpha_c) = \prod_{j=1}^{J} [P_j(\alpha_c)]^{x_j} [Q_j(\alpha_c)]^{1-x_j}$$

• we want to know: $P(\mathbf{X} \in \pi_h | \alpha_c) = \sum P(\mathbf{X} = \mathbf{x} | \alpha_c)$

An Alternative Approach to Constructing Attribute-Level Indices

- Classification consistency
- when X_1 and X_2 belong to the same latent class

$$P(\mathbf{X}_1 \in \pi_h, \mathbf{X}_2 \in \pi_h | \alpha_c) = \left(\sum_{\mathbf{x} \in \pi_h} P(\mathbf{X} = \mathbf{x} | \alpha_c)\right)$$

collapsing all H latent classes

$$P_{c}(\alpha_{c}) = \sum_{h=1}^{H} \left(\sum_{\mathbf{x} \in \pi_{h}} P(\mathbf{X} = \mathbf{x} | \alpha_{c}) \right)^{2}$$

collapsing all AMPs

$$P_{c} = \sum_{\alpha_{c} \in \mathbf{Q}_{s}} \left[\sum_{h=1}^{H} \left(\sum_{\mathbf{x} \in \pi_{h}} P(\mathbf{X} = \mathbf{x} | \alpha_{c}) \right)^{2} \right] \hat{r}_{\alpha_{c}}$$

Classification accuracy

- true latent class: C_t

$$P(\mathbf{X} \in \pi_t | \alpha_c) = \sum_{\mathbf{x} \in \pi_t} P(\mathbf{X} = \mathbf{x} | \alpha_c)$$

collapsing all AMPs

$$P_a = \sum_{\alpha_c \in Q_s} \left[\sum_{\mathbf{x} \in \pi_t} P(\mathbf{X} = \mathbf{x} | \alpha_c) \right] \hat{r}_{\alpha_c}$$

require the summation
over 2^J item response patterns

 $\hat{r}_{\alpha_{c}} = \sum_{i} P(\alpha_{c} | \mathbf{X}_{i}) / N$ (the relative frequency of AMP)

An Alternative Approach to Constructing Attribute-Level Indices

• Pattern-Level:
$$\boldsymbol{\alpha} = [\alpha_1, \alpha_2, \cdots, \alpha_K]$$

$$\hat{r}_{k1} = \sum_{\alpha_c \in \mathbf{Q}_s} \left[\mathbf{I}(\alpha_{ck} = 1) \hat{r}_{\alpha_c} \right]$$
$$\hat{r}_{k0} = 1 - \hat{r}_{k1}$$

- Attribute-Level: $\alpha_k = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- Classification consistency

$$P_{ck1} = \frac{\sum_{\alpha_c \in \mathbf{Q}_s} \left[P_c(\alpha_c) \mathbf{I}(\alpha_{ck} = 1) \hat{r}_{\alpha_c} \right]}{\hat{r}_{k1}}$$
$$P_{ck0} = \frac{\sum_{\alpha_c \in \mathbf{Q}_s} \left[P_c(\alpha_c) \mathbf{I}(\alpha_{ck} = 0) \hat{r}_{\alpha_c} \right]}{\hat{r}_{k0}}$$
$$P_{ck} = (P_{ck1})^2 \hat{r}_{k1} + (P_{ck0})^2 \hat{r}_{k0}$$

$$\begin{array}{c} \alpha_{2} \\ [0, \mathbf{1}, 0, 0, 1] & \hat{r}_{\alpha_{c1}} \\ [0, \mathbf{1}, 0, 1, 0] & \hat{r}_{\alpha_{c2}} \\ \vdots & \vdots \\ [\alpha_{1}, \mathbf{1}, \alpha_{3}, \dots, \alpha_{k}] & \hat{r}_{\alpha_{cT}} \end{array}$$

Classification accuracy $P_{ak1} = \frac{\sum_{\alpha_c \in \mathbf{Q}_s} \left[P(\mathbf{X} \in \pi_t | \alpha_c) \mathbf{I}(\alpha_{ck} = 1) \hat{r}_{\alpha_c} \right]}{\hat{r}_{k1}}$ $P_{ak0} = \frac{\sum_{\alpha_c \in \mathbf{Q}_s} \left[P(\mathbf{X} \in \pi_t | \alpha_c) \mathbf{I}(\alpha_{ck} = 0) \hat{r}_{\alpha_c} \right]}{\hat{r}_{k0}}$

 $P_{ak} = P_{ak1}\hat{r}_{k1} + P_{ak0}\hat{r}_{k0}$

Simulation Study

- Questions
 - 1. How close does the classification accuracy **match with the correct** classification rate?
 - 2. How close does the classification consistency match with the test-retest consistency rate?
 - 3. Are the new indices sensitive to changes in test discrimination power, test length, and so on?
 - 4. How do the new indices perform compared with Cui's indices?

Simulation Study

- Method
 - under the deterministic inputs, noisy "and" gate (DINA) model
- Simulation Design
 - total number of attributes (3):

3 with *p*=0.5; 5 with *p*=0.3; 8 with *p*=0.1825

- item discrimination power (2):

high: g & s ~ U(0.05, 0.25)

low: g & s ~ U(0.25, 0.45)

- test discrimination power (2):

high: using the cognitive diagnostic index (CDI) low: using a random way (RD) – dependency among the attributes (2):

independent: 0 correlated: 0.5

- test length (4):

5 items, 10 items, 15 items, 20 items

Simulation Study

- Evaluation Criteria: correct classification rate & test-retest consistency rate
 - Pattern correct classification rate (PCCR)

PCCR =
$$\frac{1}{N} \sum_{i=1}^{N} \mathbf{I}(\hat{\alpha}_i = \alpha_i)$$

- Attribute correct classification rate (ACCR)

$$\operatorname{ACCR}_{k} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{I}(\hat{\alpha}_{ik} = \alpha_{ik})$$

- Pattern test-retest consistency rate (PTRCR) PTRCR_{1,2} = $\frac{1}{N} \sum_{i=1}^{N} \mathbf{I}(\hat{\alpha}_{i}^{(1)} = \hat{\alpha}_{i}^{(2)})$

 $C_{200}^2 = 200 \times (200 - 1)/2$

- Attribute test-retest consistency rate (ATRCR)

ATRCR_{k,1,2} =
$$\frac{1}{N} \sum_{i=1}^{N} \mathbf{I}(\hat{\alpha}_{ik}^{(1)} = \hat{\alpha}_{ik}^{(2)})$$

Table 1

Pattern-Level Classification Consistency and Accuracy Indices Under Various Conditions When the Number of Attributes Is Five

					Classification Accuracy		Classification Consistency								ssificatio ccuracy	_		sificatior sistency	
ρ	Item	Test	Length	PCCR	Pa	τ	PTRCR	Pc	γ	ρ	Item	Test	Length	PCCR	Pa	τ	PTRCR	Pc	γ
0	High	RD	5	.21	.28	.27	.29	.29	.16	.5	High	RD	5	.18	.14	.17	.37	.47	.13
	C C		10	.55	.54	.51	.34	.33	.32				10	.41	.37	.38	.30	.31	.28
			15	.65	.64	.62	.45	.45	.46				15	.63	.52	.57	.45	.44	.47
			20	.64	.70	.66	.46	.54	.54				20	.76	.67	.73	.60	.53	.64
		CDI	5	.13	.20	.20	.56	.67	.18			CDI	5	.21	.20	.20	.56	.67	.18
			10	.39	.46	.50	.67	.70	.45				10	.50	.46	.51	.68	.70	.46
			15	.78	.64	.75	.73	.75	.69				15	.82	.64	.76	.72	.75	.70
			20	.82	.79	.83	.80	.82	.77				20	.88	.79	.82	.81	.82	.76
	Low	RD	5	.11	.08	.08	.08	.09	.04		Low	RD	5	.02	.06	.06	.12	.16	.04
			10	.15	.16	.16	.06	.06	.07				10	.14	.13	.15	.09	.09	.07
			15	.19	.19	.19	.07	.08	.09				15	.18	.18	.19	.09	.08	.10
			20	.23	.22	.22	.09	.09	.12				20	.21	.20	.21	.11	.09	.11
		CDI	5	.12	.12	.12	.12	.18	.07			CDI	5	.12	.12	.12	.12	.18	.07
			10	.25	.24	.24	.10	.10	.13				10	.24	.24	.24	.10	.10	.13
			15	.31	.29	.30	.13	.14	.17				15	.30	.29	.30	.14	.14	.18
			20	.37	.36	.37	.17	.17	.22				20	.37	.36	.37	.17	.17	.22

Table 1

Pattern-Level Classification Consistency and Accuracy Indices Under Various Conditions When the Number of Attributes Is Five

					ssification ccuracy		Classification Consistency				o Item			Classification Accuracy			Classification Consistency		
ρ	Item	Test	Length	PCCR	Pa	τ	PTRCR	Pc	γ	ρ	Item	Test	Length	PCCR	Pa	τ	PTRCR	Pc	γ
0	High	RD	5	.21	.28	.27	.29	.29	.16	.5	High	RD	5	.18	.14	.17	.37	.47	.13
	C C		10	.55	.54	.51	.34	.33	.32				10	.41	.37	.38	.30	.31	.28
			15	.65	.64	.62	.45	.45	.46				15	.63	.52	.57	.45	.44	.47
			20	.64	.70	.66	.46	.54	.54				20	.76	.67	.73	.60	.53	.64
		CDI	5	.13	.20	.20	.56	.67	.18			CDI	5	.21	.20	.20	.56	.67	.18
			10	.39	.46	.50	.67	.70	.45				10	.50	.46	.51	.68	.70	.46
			15	.78	.64	.75	.73	.75	.69				15	.82	.64	.76	.72	.75	.70
			20	.82	.79	.83	.80	.82	.77				20	.88	.79	.82	.81	.82	.76
	Low	RD	5	.11	.08	.08	.08	.09	.04		Low	RD	5	.02	.06	.06	.12	.16	.04
			10	.15	.16	.16	.06	.06	.07				10	.14	.13	.15	.09	.09	.07
			15	.19	.19	.19	.07	.08	.09				15	.18	.18	.19	.09	.08	.10
			20	.23	.22	.22	.09	.09	.12				20	.21	.20	.21	.11	.09	.11
		CDI	5	.12	.12	.12	.12	.18	.07			CDI	5	.12	.12	.12	.12	.18	.07
			10	.25	.24	.24	.10	.10	.13				10	.24	.24	.24	.10	.10	
			15	.31	.29	.30	.13	.14	.17				15	.30	.29	.30	.14	.14	.18
			20	.37	.36	.37	.17	.17	.22				20	.37	.36	.37	.17	.17	.22

• The average MADs across all attributes: .0239 .0236 .0225 .0619

Table 2

Attribute-Level Classification Consistency and Accuracy Indices for Attribute 1 Under Various Conditions When the Number of Attributes Is Five

		Test			Classification Accuracy			sification sistency	l					Classification Accuracy		Classification Consistency			
]	Item		Length	ACCR	Pak	τ_k	ATRCR	P _{ck}	γ_k	ρ	Item	Test	Length	ACCR	Pak	τ_k	ATRCR	P _{ck}	γ_k
)	High	RD	5	.49	.66	.66	.63	.57	.56	.5	High	RD	5	.66	.73	.74	.78	.63	.66
	C		10	.89	.84	.83	.74	.73	.73				10	.70	.75	.76	.75	.64	.68
			15	.89	.89	.86	.80	.80	.80				15	.89	.91	.90	.83	.84	.85
			20	.88	.89	.87	.80	.80	.80				20	.95	.95	.94	.91	.91	.91
		CDI	5	.94	.94	.94	.88	.88	.93			CDI	5	.94	.94	.94	.88	.88	.93
			10	.94	.96	.96	.92	.92	.95				10	.94	.96	.96	.93	.93	.95
			15	.98	.99	.98	.97	.97	.97				15	.99	.99	.98	.97	.97	.97
			20	.99	.99	.98	.97	.97	.97				20	.99	.99	.98	.97	.97	.97
	Low	RD	5	.62	.58	.58	.57	.53	.52		Low	RD	5	.44	.52	.52	.65	.64	.50
			10	.73	.72	.72	.61	.60	.61				10	.60	.62	.66	.59	.56	.58
			15	.72	.74	.74	.64	.63	.64				15	.72	.71	.71	.61	.59	.62
			20	.73	.74	.74	.63	.62	.65				20	.72	.71	.71	.62	.59	.62
		CDI	5	.60	.68	.72	.57	.64	.66			CDI	5	.59	.68	.72	.56	.64	.66
			10	.78	.76	.78	.65	.64	.69				10	.77	.76	.78	.65	.64	.69
			15	.78	.76	.78	.65	.64	.69				15	.77	.76	.78	.65	.64	.69
			20	.81	.82	.81	.72	.70	.74				20	.81	.82	.81	.71	.70	.74

Table 3

Classification Accuracy and Consistency Indices With Three and Eight Attributes When Test Length is 20

					Pa	atterr	Indices			Mean of Attribute Indices								
				Acc	urac	у	Consis	Consistency			curacy	y	Consistency					
K	ρ	Item	Test	PCCR	Pa	τ	PTRCR	Pc	γ	ACCR	Pak	τ_k	ATRCR	\mathbf{P}_{ck}	γ_k			
3	0	High	RD	.89	.88	.86	.81	.80	.79	.96	.96	.95	.93	.92	.92			
			CDI	.99	.99	.99	.99	.98	.99	1.00	1.00	1.00	1.00	1.00	1.00			
		Low	RD	.54	.49	.51	.33	.36	.38	.79	.78	.78	.69	.67	.70			
			CDI	.67	.65	.67	.48	.48	.58	.87	.86	.87	.77	.77	.82			
	.5	High	RD	.63	.79	.72	.87	.80	.70	.89	.88	.90	.90	.82	.88			
			CDI	.99	.99	.99	.99	.98	.99	1.00	1.00	1.00	1.00	1.00	1.00			
		Low	RD	.50	.49	.50	.32	.31	.37	.78	.77	.78	.67	.65	.70			
			CDI	.65	.65	.67	.49	.48	.58	.87	.86	.87	.77	.77	.82			
8	0	High	RD	.31	.34	.33	.15	.18	.20	.86	.86	.87	.78	.77	.81			
			CDI	.45	.49	.52	.48	.51	.43	.91	.92	.92	.92	.88	.90			
		Low	RD	.06	.05	.05	.01	.02	.02	.68	.66	.67	.59	.57	.58			
			CDI	.11	.07	.08	.03	.07	.03	.73	.72	.73	.70	.70	.65			
	.5	High	RD	.44	.36	.38	.22	.24	.28	.89	.87	.87	.82	.79	.83			
		-	CDI	.48	.49	.52	.47	.51	.44	.91	.92	.92	.92	.88	.90			
		Low	RD	.05	.03	.04	.02	.02	.01	.62	.60	.62	.58	.56	.55			
			CDI	.10	.07	.08	.03	.07	.03	.74	.72	.73	.70	.70	.65			

Discussion

- Provides useful estimates of CC and CA indices not only at the pattern level but also **at the attribute level**.
- The values of the new indices are easier to calculate.

Further Research

- solve a practical problem in test development
- reexamined in a new context or with different groups
- construct their confidence intervals
- be applied to **different CDMs**

Thanks for listening!