Journal of Educational and Behavioral Statistics

Optimizing the Use of Response Times for Item Selection in Computerized Adaptive Testing

Edison M. Choe Graduate Management Admission Council

Justin L. Kern University of Illinois, Urbana-Champaign

hua-hua Chang University of Illinois, Urbana-Champaign

Reporter: Yingshi Huang

Introduction

• Computerized Adaptive Testing (CAT)

the number of items administered

information-based optimality criterion maximum Fisher information criterion (MI)

and low time the time it takes to complete the test intensity \circ O maximizes the ratio of Fisher information to expected response time (MIT) a time-weighted version of a-stratification with b-blocking (ASBT) $\bigwedge^{\text{the mean and variance}}$ of testing times & Ω **Purpose:** improve upon the innovative RT-based item selection methods

both high

discrimination

How to model response times?

- the lognormal model (van der Linden, 2006)
- the Box–Cox normal model (Klein Entink, van der Linden, & Fox, 2009)
- the Cox proportional hazards model (C. Wang, Fan, Chang, & Douglas, 2013)
- the linear transformation model (C. Wang, Fan, Chang, & Douglas, 2013)

• the lognormal model: an idea of curve fitting

 $\sigma = 0.25, u = 0$ 1.5 PDF 1.0 0.5 $\sigma = 0.5, \mu = 0$ $\sigma=1, u=0$ 0.5 1.0 1.5 2.0 2.5 Ω \mathcal{X} [From *Wikipedia*]

Why lognormal? has the **positive support** and a **skew required** for response-time distributions ability *θ* difficulty *b* with discrimination *a* $\sigma^2 = (1/\alpha_i)^2$ analogy to the **two-parameter** logistic (2PL) response model no need for guessing parameter

(time has a natural lower bound at $t = 0$)

expected RT: $E(T_{ii}|\tau_i) = e^{\beta_j - \tau_i + 1/(2\alpha_j^2)}$

van der Linden, 2006 *JEBS*

How to model the relations between response and RT?

• a "plug-and-play approach"

e.g. 3PLM & lognormal model 1. response model & RT model

van der Linden, 2007 *PSYCHOMETRIKA*

How to model the relations between response and RT?

• a "plug-and-play approach"

2. population model & item-domain model e.g. multivariate normal distribution $f(\xi_j; \mu_{\mathcal{P}}, \Sigma_{\mathcal{P}})$ $f(\boldsymbol{\psi}_i; \boldsymbol{\mu}_{\mathcal{I}}, \boldsymbol{\Sigma}_{\mathcal{I}})$

e.g. 3PLM & lognormal model 1. response model & RT model

van der Linden, 2007 *PSYCHOMETRIKA*

CAT framework

How to assemble a test?

How to improve exposure balance?

• a-stratification with b-blocking (ASB)

at any given stage: maximize $B_j(\hat{\theta}_i) = \frac{1}{|\hat{\theta}_i - b_j|}$

7

Motivation

How to use RT in item selection?

• maximizes the ratio of Fisher information to expected response time (MIT)

 $\Pi_j(\hat{\theta}_i, \hat{\tau}_i) = \frac{I_j(\hat{\theta}_i)}{E(T_{ij}|\hat{\tau}_i)}$ favors items with high information and low expected RTs

• a time-weighted version of ASB (ASBT) at any given stage:

$$
\text{maximize} \quad \text{BT}_j(\hat{\theta}_i, \hat{\tau}_i) \ = \ \frac{B_j(\theta_i)}{E(T_{ij}|\hat{\tau}_i)}
$$

sacrifice the benefits of time weighting

Proposed Item Selection Procedures

1. β-partitioned MIT (BMIT)

2. MI with β-matching (MIB)

$$
IB_j(\hat{\theta}_i, \hat{\tau}_i) = \frac{I_j(\hat{\theta}_i)}{|\beta_j - \hat{\tau}_i|}
$$

- **less restrictive** than perpetually selecting items with the lowest βj and highest αj
- **lower RT variability** across examinees $E(T_{ii}|\tau_i) = e^{\beta_j \tau_i + 1/(2\alpha_j^2)}$

Proposed Item Selection Procedures

3. Generalized MIT (GMIT)

 $0.5^{0.5}$ ≈ **0.71 > 0.59** ≈ 0.5^{0.75} ?

vary the influence of the centered expected RT

In MIT: IT_j(
$$
\hat{\theta}_i
$$
, $\hat{\tau}_i$) = $\frac{I_j(\hat{\theta}_i)}{E(T_{ij}|\hat{\tau}_i)}$ VS IT_j^G(θ_i , τ_i) = $\frac{I_j(\theta_i)}{|E(T_{ij}|\tau_i) - \nu|^{\overline{w}_i}}$, { ν, w } $\in \mathbb{R}^2_{\geq 0}$
\n $E(T_{ij}|\tau_i) = 0$
\n $e^{\beta_j - \tau_i + 1/(2\alpha_j^2)} = 0$
\nthe least time intensive items
\nsubstantial variability of
\ntesting times
\n $E(T_{ij}|\tau_i) = \nu$
\n $\beta_j + 1/(2\alpha_j^2) = \tau_i + \ln \nu$
\n $\beta_j + 1/(2\alpha_j^2) = \tau_i + \ln \nu$

Simulation studies

• investigate the performance of three new RT-informed criteria for item selection (under the hierarchical framework: 3PLM + lognormal models)

Item Selection Methods

- Maximum information **MI**
- MI with time MIT
- ASB a-stratification with b -blocking
- **ASBT** ASB with time
- MI with β -matching **MIB**
- β -partitioned MIT **BMIT**
- **Generalized MIT GMIT**

Performance baseline: MI Ideal item pool usage but worst accuracy: Random −Study 1.

hundreds of **simulations** were conducted with a broad range of parameter values

- two representative sets
- −Study 2.

further validate the effectiveness of GMIT

Simulation studies 12

• Evaluation Criteria

RMSE(
$$
\hat{\theta}
$$
) = $\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\theta}_i - \theta_i)^2}$
RMSE($\hat{\tau}$) = $\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\tau}_i - \tau_i)^2}$

1. RMSE 2. M and SD of testing times

$$
\bar{t} = \frac{1}{n} \sum_{i=1}^{n} t t_i = \frac{1}{n} \sum_{i=1}^{n} \sum_{j \in R_i} t_{ij}
$$

$$
s_{tt} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (t t_i - \bar{t} t)^2}
$$

3. M and SD of test overlap rates

$$
\overline{\text{tor}} = {n \choose 2}^{-1} \sum_{i=1}^{n-1} \sum_{i'=i+1}^{n} \text{tor}_{ii'} = \frac{n}{L(n-1)} \sum_{j=1}^{m} \text{er}_j^2 - \frac{1}{n-1}
$$
\n
$$
S_{\text{tor}} = \sqrt{\left[{n \choose 2} - 1 \right]^{-1} \sum_{i=1}^{n-1} \sum_{i'=i+1}^{n} (\text{tor}_{ii'} - \overline{\text{tor}})^2}
$$

Study 1 13

- Set 1
	- − item parameters

$$
(a_j^*, b_j, \beta_j) \sim \mathcal{N}_2[\mu_1, \Sigma_1] \rightarrow a_j^* = \log a_j
$$

$$
\mu_1 = \begin{bmatrix} 0.3 \\ 0.0 \\ 0.0 \end{bmatrix} \Sigma_1 = \begin{bmatrix} 0.10 & 0.15 & 0.00 \\ 0.15 & 1.00 & 0.25 \\ 0.00 & 0.25 & 0.25 \end{bmatrix}
$$

$$
c_j \sim \beta[2, 10]
$$

$$
\alpha_j \sim U[2, 4]
$$

− person parameters

$$
(\theta_i, \boxed{\tau_i} \sim \mathcal{N}_2[\mathbf{\mu}_2, \Sigma_2]
$$

$$
\mathbf{\mu}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma_2 = \begin{bmatrix} 1.00 & 0.25 \\ 0.25 & 0.25 \end{bmatrix}
$$

- Set 2
	- − item parameters

$$
(a_j^*, b_j, \beta_j) \sim \mathcal{N}_2[\mu_1, \Sigma_1]
$$

$$
\mu_1 = \begin{bmatrix} 0.30 \\ 0.00 \\ \overline{-0.25} \end{bmatrix} \Sigma_1 = \begin{bmatrix} 0.10 & 0.15 & 0.00 \\ 0.15 & 1.00 & 0.20 \\ 0.00 & 0.20 & \overline{0.16} \end{bmatrix}
$$

$$
c_j \sim \beta[2, 10]
$$

$$
\overline{\alpha_j} \sim U[0.5, 2.5]
$$

− person parameters

$$
(\theta_i, \boxed{\tau_i} \sim \mathcal{N}_2[\mathbf{\mu}_2, \Sigma_2]
$$

$$
\mathbf{\mu}_2 = \begin{bmatrix} 0.00 \\ 0.25 \end{bmatrix} \Sigma_2 = \begin{bmatrix} 1.00 & 0.20 \\ 0.20 & 0.16 \end{bmatrix}
$$

Study 1

- For each set
	- − 500 items
	- − 1000 examinees
	- − 50 test length (first item chosen randomly)
	- − Estimation: MLE + EAP (as an interim substitute)

• For ASBT

- − five strata of 100 items each (10 items each stage)
- For BMIT
	- − One β-partition: equivalent to no β-partitioning
	- − Two β-partitions: **low** 250 items (first 25); **high** 250 items (next 25)
	- − Three β-partitions:
		- **low** 167 items (first 17); **mid** 167 items (next 17); **high** 166 items (final 16)
- For GMIT
	- $-V = \{0.0, 0.1, ..., 3.0\}$
	- $-W = \{0.50, 0.75, 1.00\}$ $|V \times W| = 93$

Estimation Accuracy

Set 1 Set 2

Results - Study 1

Estimation Accuracy

 $\ensuremath{\mathbb{S}}$

70

80

 \mathbb{S}^0

 Q

 $\ensuremath{\mathcal{S}}\xspace$

 \sharp

 $v = 0.3$ $v = 1.1$

Standard Deviation of Test Overlap Rate

Study 2

- real data from a high-stakes, large-scale standardized CAT
	- − 2000 examinees
	- − item pool:
		- 500 multiple-choice items (3PLM)
	- $-\alpha$ & β :
		- a modified version of van der Linden's (2007) MCMC routine
			- fixed a, b, c to the precalibrated values, and mean(τ) = 0
	- − 30 test length (first item chosen randomly)
	- − Estimation: MLE + EAP (as an interim substitute)
- For ASBT
	- − five strata of 100 items each (6 items each stage)

 $GMIT: w = 1.00$

 $GMIT: w = 0.75$

 $GMIT: w = 0.50$

MIT

ASBT

Random

MI

 \times

of more or one

.....

 \cdot $-$

Mean Test Overlap Rate

 0.8 $\hat{\theta}$ \Box \Box 0.6 RMSE 0.4 iø 0.2 0.0 0.0 2.5 3.0 0.5 1.0 1.5 2.0

 \vee

Standard Deviation of Test Overlap Rate

 2.5

 3.0

Discussion

• provide strong evidence for the overall superiority of GMIT

− **increase the validity of test scores**

- \checkmark markedly reducing the mean and variance of testing times
	- curtail the likelihood of time pressure–induced rapid guessing
- \checkmark dramatically reducing the mean and variance of test overlap rates

decrease the chances of item preknowledge

− **the truly remarkable feature:**

✓ **without imposing** explicit item exposure **controls** or RT **constraints**

Discussion

- the initialization of GMIT for **use in practice**:
	- 1. calibrating the item pool
	- 2. generating examinees
	- 3. establishing a set of evaluation criteria
	- 4. conducting a series of CAT simulations with a range of v and w values
	- 5. selecting the optimal {v, w}

− **two or more criteria:**

depend on the minimally acceptable levels the user's rational judgment

Discussion 25

• the initialization of GMIT for use in practice:

− **objective measure:** Rank $\{v,w\}$ $\Omega_{\{v,w\}} = \gamma^T \mathbf{Z}_{\{v,w\}}, \ \{v,w\} \in V \times W$ $\{1.4, 0.75\}$ $\overline{2}$ $\{1.5, 1.00\}$ 3 $\{1.5, 0.75\}$ a weighted average of the standardized criteria $\overline{\mathcal{A}}$ $\{1.4, 0.50\}$ (if the values of *γ* are nonnegative and sum to 1) 5 $\{1.3, 1.00\}$ $\{1.6, 0.50\}$ 6 $\{1.6, 0.75\}$ 7 $\{1.3, 0.75\}$ 8 $\{1.9, 0.75\}$ 9 placed more emphasis on 10 $\{1.3, 0.50\}$ ability estimation accuracy 93 $\{3.0, 0.75\}$

 $\Omega_{\{v,w\}}$

 $-.4746$

 $-.4537$

 $-.4436$

 $-.4182$

 $-.4070$

 $-.4027$

 $-.3935$

 $-.3865$

 $-.3758$

 $-.3708$

.5055

Future directions

- implementation and evaluation under **a wide variety of schemes**
- confirm the usefulness of the technique **in operational CAT**
- compare GMIT to **other RT-based methods** not considered in this article
- β-partitioning may have potential in **substantive applications**

Beijing Normal University

Thanks for Listening!

Reporter: Yingshi Huang