A Continuous *a*-Stratification Index for Item Exposure Control in Computerized Adaptive Testing

Alan Huebner¹, Chun Wang², Bridget Daly³, and Colleen Pinkelman⁴ IF: 1.326 Applied Psychological Measurement 2018, Vol. 42(7) 523–537 © The Author(s) 2018 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0146621618758289 journals.sagepub.com/home/apm

Alan Huebner

Reporter: Yingshi Huang

Introduction

Computerized Adaptive Testing (CAT)

practical consideration: prevent items from being overexposed

an appropriate K value

- balance exposure control and measurement accuracy
- moderate-size fixed constant (K = 4)

the replenishment of item bank 🏆

- recreate every time
- it is more challenging in high-stakes tests

no need to choose the number of strata

propose an alternate approach: continuous a-stratification

a-Stratification

• One-dimensional IRT model

$$P_{j}(\theta) = P_{j}(U=1|\theta) = c_{j} + (1-c_{j}) \frac{\exp[1.7a_{j}(\theta-b_{j})]}{1+\exp[1.7a_{j}(\theta-b_{j})]}$$

- Method proceeds
 - 1. Partition the item bank into K levels according to item a values;
 - 2. Partition the test into K stages;
 - 3. J_k items are administered from Stratum k $(J_1 + J_2 + ... + J_k = J)$: e.g. match-*b* / MFI;
 - 4. Repeat Step 3 from k = 1, 2, ..., K.

strata1	strata2 ···	strata K
lowest a	next lowest a	highest a

a-Stratification

• Two-dimensional IRT model

$$P_{j}(\boldsymbol{\theta}) = P_{j}(U=1|\boldsymbol{\theta}) = \frac{\exp\left[1.7\mathbf{a}_{j}'(\boldsymbol{\theta}-b_{j}1)\right]}{1+\exp\left[1.7\mathbf{a}_{j}'(\boldsymbol{\theta}-b_{j}1)\right]} \quad \mathbf{a}_{j} = \left\{a_{j1}, a_{j2}\right\} \quad \boldsymbol{\theta} = \left\{\theta_{1}, \theta_{2}\right\}$$

use some functions of \mathbf{a}_i for the stratification

What we want to achieve:

- At an early stage: **measure the average** of θ
- As the test progresses: pinpoint the location of θ along **each individual dimension**
- θ_1 and θ_2 should be measurable to the **same degree of precision**

- Method proceeds
 - 1. Partition the item bank into K levels according to item a values;

- mimics the behavior of |a| (equivalently *a*, because a > 0) in a unidimensional test

Lee, Ip, & Fuh, 2008 EPM

Method proceeds

- 1. Partition the item bank into *K* levels according to item a values;
- 2. Divide each level (except the first stratum) into two subsections: **sub-1** $(a_1 > a_2)$ & **sub-2** $(a_1 \le a_2)$;
- 3. Partition the test into *K* stages;
- 4. J_k items are administered from Stratum k $(J_1 + J_2 + ... + J_k = J)$: in the first stage: using some psychometric criterion

<u>after the first stage</u>: select J_{k1} and J_{k2} items from each subsection $(J_{k1} + J_{k2} = J_k)$;

5. Repeat Step 4 from k = 1, 2, ..., K. And keep $\sum_{k=2}^{K} J_{k1} = \sum_{k=2}^{K} J_{k2} \rightarrow \text{same degree of precision}$

- "match-b":
$$\hat{b} = \frac{a_1\hat{\theta}_1 + a_2\hat{\theta}_2}{a_1 + a_2}$$

- D-optimality: $(1.7)^4 \left\{ \sum_{j=1}^{j'+1} a_{j1}^2 P_j(\hat{\theta}) \left(1 - P_j(\hat{\theta})\right) \times \sum_{j=1}^{j'+1} a_{j2}^2 P_j(\hat{\theta}) \left(1 - P_j(\hat{\theta})\right) - \left(\sum_{j=1}^{j'+1} a_{j1}a_{j2} P_j(\hat{\theta}) \left(1 - P_j(\hat{\theta})\right)\right)^2 \right\}$

Lee, Ip, & Fuh, 2008 EPM

- Continuous a-stratification index (CAI)
 - incorporate exposure control as one building block intrinsic to the index itself
 - item (j' + 1) is selected to **maximize** the quantity:

CAI×Inf

For the 1-DIM case

CAI = exp $\left| -\beta \left(\frac{r(a)}{j'/J} - 1 \right)^2 \right| \beta > 0$: determines the sensitivity of the discrepancy between j'/J and a

•
$$\frac{r(a)}{j'/J} - 1$$
: find $r(a)$ as close as possible to j'/J

- \checkmark At the beginning of the test: j'/J is small \rightarrow item with smaller a
- \checkmark As the test proceeds: force *a* to be ascending

Continuous a-Stratification

- Continuous a-stratification index (CAI)
 - For the 2-DIM case

CAI = exp
$$\left[-\beta \left(\frac{r(\mathbf{a}'\mathbf{a})}{j'/J} - 1\right)^2\right]$$

 $\sqrt{a'a}$ is the so-called multidimensional *a* parameter

- a second version

$$\left|\frac{r(a)}{j'/J} - 1\right|$$
 VS $\left(\frac{r(a)}{j'/J} - 1\right)^2$

Preliminary simulations: did not outperform in any of the test conditions

- Item selection method
 - CAI method (β = 2)
 - a-stratification method (K = 4):
 Maximizing Fisher information (1-DIM) or D-optimality (2-DIM)
 Match-b
 - $\hat{\theta}_0$: selecting randomly within the range -3.5 to 3.5

Case	Length	Test stages for Strata 1/2/3/4
I-DIM	20	(1-5)/(6-10)/(11-15)/(16-20)
	30	(1-7)/(8-14)/(15-22)/(23-30)
2-DIM	40	(1-10)/(11-20)/(21-30)/(31-40)
	60	(1-15)/(16-30)/(31-45)/(46-60)

Note. I-DIM = one-dimensional; 2-DIM = two-dimensional.

- 1-DIM Study
 - Item pool structure
 - ➢ test length: 20 & 30 items
 - ➢ item bank: 500 items
 - ➤ a ~ U(0.0, 1.3)
 - ▷ b ~ U(-1.3, 1.3)
 - \succ c ∼ U(0.2, 0.3)
 - Examinee generation
 - examinee abilities:
 - 1. discrete uniform (DU) distribution:

 \rightarrow from -3.2 to 3.2 by an increment of 0.4 (17 θ \times 300 = 5,100)

- 2. normal(0,1) distribution: 5,100 examinees
- > theta estimation: grid search (from -3.5 to 3.5, by 0.01) $2 \times 2 \times 3 = 12$ total conditions

Evaluation criteria

11

- 2-DIM Study
 - Item pool structure
 - ➢ test length: 40 & 60 items
 - ➢ item bank: 500 items
 - \succ *a*₁ & *a*₂ ∼ *U*(0.0, 1.3)
 - \succ b ∼ U(-1.3, 1.3)
 - Examinee generation
 - ➤ examinee abilities:
 - 1. 2-DIM grid:

 \rightarrow from -2 to 2 by an increment of 0.4 (11 $\theta_1 \times 11 \theta_2 \times 50 = 6,050$)

2. bivariate normal distribution: 6,050 examinees

$$\left(\begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{bmatrix} 1&\rho\\ \rho&1 \end{bmatrix} \right)$$
 low: ρ = 0.3; high: ρ = 0.7

- \succ theta estimation: grid search (from -3.5 to 3.5, by 0.1)
- 2×3×3 = 18 total conditions

- Evaluation criteria

$$\Rightarrow \text{Bias} = \frac{1}{N} \sum_{i=1}^{N} \left\{ \left(\hat{\theta}_{i1} - \theta_{i1} \right) + \left(\hat{\theta}_{i2} - \theta_{i2} \right) \right\}$$
$$\Rightarrow \text{MSE} = \frac{1}{N} \sum_{i=1}^{N} \left\{ \left(\hat{\theta}_{i1} - \theta_{i1} \right)^2 + \left(\hat{\theta}_{i2} - \theta_{i2} \right)^2 \right\}$$
$$\Rightarrow \chi^2 = \sum_{m=1}^{M} \frac{(er_m - J/M)^2}{J/M}$$

Condition	Length	Ability	Method	Bias	MSE	x ²
1	20	N(0,1)	SMB	0.076	0.31	83.37
2	20	N(0,1)	SMI	0.032	0.22	145.03
3	20	N(0,1)	CAI	0.037	0.21	101.01
4	20	DU	SMB	0.085	0.44	115.17
5	20	DU	SMI	0.039	0.33	127.85
6	20	DU	CAI	0.040	0.32	103.47
7	30	N(0,1)	SMB	0.042	0.19	69.8
8	30	N(0,1)	SMI	0.021	0.14	139.57
9	30	N(0,1)	CAI	0.019	0.13	98.54
10	30	DU	SMB	0.057	0.28	105.65
11	30	DU	SMI	0.026	0.23	122.37
12	30	DU	CAI	0.031	0.24	99.48

Note. I-DIM = one-dimensional; MSE = mean squared error; DU = discrete uniform distribution; SMB = a-stratification with match-b item selection; SMI = a-stratification with maximum Fisher information item selection; CAI = continuous a-stratification.

Condition 5: MSE by $\boldsymbol{\theta}$

Condition 6: MSE by $\boldsymbol{\theta}$

						ltem expo	sure rates		
Co	ndition	Method	<0.05	0.05-0.10	0.10-0.20	0.20-0.30	0.30-0.40	0.40-0.50	>0.50
l 2	20 items	SMB SMI	0.825 0.83 I	0.085 0.035	0.052 0.048	0.015 0.044	0.004 0.017	0.012 0.012	0.006 0.012
3 7		CAI SMB	0.775 0.640	0.062 0.206	0.094	0.050	0.010 0.010	0.004 0.008	0.004
8 9	30 items	SMI CAI	0.754 0.696	0.048 0.050	0.071	0.058	0.029	0.015 0.004	0.025

Note. SMB = a-stratification with match-b item selection; SMI = a-stratification with maximum Fisher information item selection; CAI = continuous a-stratification.

Condition	Length	Ability	Method	Bias	MSE	χ ²
I	40	BN (ρ = .3)	SMB	-0.003	0.37	12.87
2	40	BN $(\rho = .3)$	SMI	0.001	0.28	86.55
3	40	$BN(\rho = .3)$	CAI	-0.003	0.26	57.17
4	40	BN ($\rho = .7$)	SMB	-0.007	0.40	14.15
5	40	BN ($\rho = .7$)	SMI	0.000	0.30	81.63
6	40	BN $(\rho = .7)$	CAI	<u>-0.005</u>	0.27	58.61
7	40	Ğrid	SMB	0.002	0.39	16.77
8	40	Grid	SMI	-0.005	0.31	75.96
9	40	Grid	CAI	-0.008	0.28	51.55
10	60	BN ($\rho = .3$)	SMB	-0.00 I	0.24	8.88
11	60	$BN(\rho = .3)$	SMI	-0.002	0.19	84.83
12	60	$BN(\rho = .3)$	CAI	0.001	0.17	54.40
13	60	BN (ρ = .7)	SMB	-0.003	0.26	9.50
14	60	BN ($\rho = .7$)	SMI	-0.004	0.21	78.47
15	60	<u>BN (ρ = .7)</u>	CAI	-0.008	0.19	55.91
16	60	Grid	SMB	-0.004	0.26	13.08
17	60	Grid	SMI	-0.003	0.21	71.60
18	60	Grid	CAI	0.003	0.18	46.56

Note. MSE = mean squared error; BN = bivariate normal ability generating distribution with correlation ρ ; SMB = *a*-stratification with match-*b* item selection; SMI = *a*-stratification with maximum D-optimality item selection; CAI = continuous *a*-stratification.

Results: 2-DIM

Co	ndition	Method	<0.05	0.05-0.1	0.10-0.20	0.20-0.30	0.30-0.40	0.40-0.50	>0.50
Ι		SMB	0.173	0.550	0.271	0.002	0.000	0.000	0.004
2		SMI	0.640	0.069	0.106	0.102	0.060	0.019	0.004
3	40	CAI	0.531	0.129	0.185	0.112	0.035	0.006	0.000
4	itoms	SMB	0.196	0.548	0.250	0.002	0.000	0.000	0.004
5	nomo	SMI	0.619	0.088	0.112	0.102	0.056	0.021	0.002
6		CAI	0.540	0.115	0.194	0.106	0.038	0.008	0.000
10		SMB	0.010	0.262	0.694	0.029	0.000	0.000	0.004
11		SMI	0.494	0.096	0.133	0.133	0.071	0.058	0.015
12	60	CAI	0.373	0.135	0.235	0.154	0.075	0.021	0.006
13	itoms	SMB	0.015	0.296	0.654	0.031	0.000	0.000	0.004
14	пенто	SMI	0.477	0.090	0.152	0.140	0.077	0.050	0.015
15		CAI	0.381	0.131	0.221	0.165	0.077	0.021	0.004

Note. BN = bivariate normal ability generating distribution with correlation ρ ; SMB = *a*-stratification with match-*b* item selection; SMI = *a*-stratification with maximum D-optimality item selection; CAI = continuous *a*-stratification.

- The **SMB** method was shown to be the **best** by far in terms of **item exposure control** but yielded consistently **high MSE**.
- CAI was similar to or better than that of SMI in terms of bias and MSE while producing smaller χ^2 values.
- The manner in **which the test is started** may affect the performance of each method.

- Only one value was examined for β & only one item bank was simulated for each study & the number of strata was fixed at 4.
- An advantage of the CAI method that may not be readily apparent is its ability to be **extended to more than two dimensions**.
- CAI could be **combined with a method** of maximum exposure control to limit the maximum item exposure rate.
- Relax the fact that CAI always forces the discrimination parameters of the selected items to be strictly ascending.

Marie Wiberg - Dylan Molenaar Jorge González - Ulf Böckenholt Jee-Seon Kim *Editors*

The Annual Meeting of the Psychometric Society IMPS 2019: Quantitative Psychology pp 201-211 Cite as

Performance of the Modified Continuous *a*-Stratification Indices in Computerized Adaptive Testing

Authors

Ya-Hui Su 🖂 , Yan-Ling Lai

Ya-Hui Su

Introduction

• the maximum item exposure rate: <u>commonly set to 0.2</u>

						ltem expo	sure rates		
Co	ndition	Method	<0.05	0.05-0.10	0.10-0.20	0.20-0.30	0.30-0.40	0.40-0.50	>0.50
 2	20	SMB	0.825	0.085	0.052	0.015	0.004	0.012	0.006
3	items	CAI	0.775	0.062	0.094	0.050	0.010	0.004	0.004
7 8 9	30 items	SMB SMI CAI	0.640 0.754 0.696	0.206 0.048 0.050	0.098 0.071 0.131	0.027 0.058 0.092	0.010 0.029 0.017	0.008 0.015 0.004	0.010 0.025 0.010

Note. SMB = a-stratification with match-b item selection; SMI = a-stratification with maximum Fisher information item selection; CAI = continuous a-stratification.

Purpose: combine the CAI method with item exposure control methods to limit item exposure

Introduction

• the maximum item exposure rate: <u>commonly set to 0.2</u>

						ltem expo	sure rates		
Co	ndition	Method	<0.05	0.05-0.10	0.10-0.20	0.20-0.30	0.30-0.40	0.40-0.50	>0.50
 2 3	20 items	SMB SMI CAI	0.825 0.831 0.775	0.085 0.035 0.062	0.052 0.048 0.094		3.8 8.6 6.9	% % %	
7 8 9	30 items	SMB SMI CAI	0.640 0.754 0.696	0.206 0.048 0.050	0.098 0.071 0.131		5.6 12.7 12.3	% % %	

Note. SMB = a-stratification with match-b item selection; SMI = a-stratification with maximum Fisher information item selection; CAI = continuous a-stratification.

Purpose: combine the CAI method with item exposure control methods to limit item exposure

- three modified CAI methods:
 - CAI + exposure
 - CAI + freeze
 - CAI + SHOF

- three modified CAI methods:
 - CAI + exposure
 - CAI + freeze
 - CAI + SHOF

$$\text{Maximum priority index}$$

$$PI_{j} = Inf_{i} \times \prod_{k=1}^{K} (\omega_{k}f_{k})^{c_{jk}}$$

$$f_{k} = \frac{1}{r_{max}} \left(r_{max} - \frac{s_{i}}{S} \right)$$

$$= \frac{1}{0.2} \left(0.2 - \frac{\text{examinees have seen item } i}{\text{examinees have taken the CAT}} \right)$$

$$\text{CAI}_{i} \times Inf_{i} \times \frac{\left(r_{max} - \frac{s_{i}}{S} \right)}{r_{max}}$$

- CAI + exposure
- CAI + freeze
- CAI + SHOF
- Maximum priority index $PI_{j} = Inf_{i} \times \prod_{k=1}^{K} (\omega_{k}f_{k})^{c_{jk}}$ $f_{k} = \frac{1}{r_{max}} \left(r_{max} \frac{s_{i}}{S} \right)$ $= \frac{1}{0.2} \left(0.2 \frac{\text{examinees have seen item } i}{\text{examinees have taken the CAT}} \right)$ $\text{CAI}_{i} \times Inf_{i} \times \frac{\left(r_{max} \frac{s_{i}}{S} \right)}{r_{max}}$

28

- three modified CAI methods:
 - CAI + exposure
 - CAI + freeze
 - CAI + SHOF
 - The <u>Sympson and Hetter</u> online procedure with freeze (SHOF)

 $p(S) \rightarrow$ the probability that an item is 'selected'

 $p(A) \rightarrow$ the probability that an item is actually 'administered'

$$p(A) = p(A|S) \times p(S) \le r_{\max}$$

to adjust p(S) such that p(A) is less than or equal to r_{max}

a random number is less than p(A|S): administer otherwise: select next item

The Sympson and Hetter online procedure with freeze (SHOF)

 $p(A) = p(A|S) \times p(S) \le r_{\max}$

How to update p(A|S) sequentially during the test?

Step 1. Set the initial p(A|S) = 1 for all items in the item pool.

Step 2 Administer CATs to the *j*th examinee as in the SH procedure.

Step 3. Find p(S) and p(A) for each item by computing the proportion of times an item has been selected and administered, respectively.

Step 4. Update p(A|S) for each item based on p(S) and p(A) as follows:

if $p(A) > r_{\text{max}}$, then p(A|S) = 0.0;

if $p(A) \le r_{\max}$ and $p(S) > r_{\max}$, then $p(A|S) = r_{\max}/p(S)$;

if $p(A) \le r_{\text{max}}$ and $p(S) \le r_{\text{max}}$, then p(A|S) = 1.0

Step 5. Repeat step 2 until CATs have been administered to all examinees.

CAI 🔶 SHOF

- Item selection method
 - **CAI** method ($\beta = 2$)
 - a-stratification method (K = 4):

SMI: Maximizing Fisher information & SMB: Match-b

- three modified CAI methods: CAI + exposure, CAI + freeze, and CAI + SHOF
- Item pool structure
 - test length: 20 & 30 items
 - item bank: 500 items
 - $-a \sim U(0.0, 1.3)$
 - $b \sim U(-1.3, 1.3)$
 - $c \sim U(0.2, 0.3)$

- Examinee generation
 - examinee abilities:

normal(0,1) distribution: 5,100 examinees

- theta estimation:

maximum likelihood estimator (MLE)

- Evaluation Criteria
 - measurement precision

> bias =
$$\frac{1}{N} \sum_{n=1}^{N} (\hat{\theta}_n - \theta_n)$$

> RMSE = $\sqrt{\frac{1}{N} \sum_{n=1}^{N} (\hat{\theta}_n - \theta_n)^2}$

$$\succ r_{\theta,\hat{\theta}} = \frac{COV_{\theta,\hat{\theta}}}{S_{\theta}S_{\hat{\theta}}}$$

> relative efficiency (RE) =
$$\frac{\text{RMSE}_{\text{SMI}}}{\text{RMSE}_{\text{others}}}$$

- exposure control

>
$$\chi^2 = \frac{1}{L/I} \sum_{i=1}^{I} (r_i - L/I)^2$$

Results

Item length	Item selection methods	bias	RMSE	RE	$r_{ heta,\hat{ heta}}$
20	SMB	0.068	0.575	0.858	0.864
	SMI	0.024	0.494	1.000	0.901
[CAI	0.018	0.469	1.053	0.912
	CAI + exposure	0.026	0.496	0.996	0.901
	CAI + freeze	0.016	0.461	1.072	0.916
	CAI + SHOF	0.020	0.469	1.054	0.912
30	SMB	0.018	0.397	0.923	0.934
	SMI	-0.001	0.366	1.000	0.944
	CAI	0.007	0.363	1.009	0.943
	CAI + exposure	0.016	0.402	0.911	0.933
	CAI + freeze	0.012	0.361	1.013	0.944
	CAI + SHOF	0.011	0.372	0.983	0.940

 Table 1
 Measurement precision of the six item selection methods under various conditions

	Item selection										
Test length	methods	Item exposure rates								Max.	Chi-square statistics
		0	0-0.05	0.05-0.1	0.1-0.2	0.2-0.3	0.3-0.4	0.4–0.5	>0.5		
20	SMB	0.036	0.874	0.012	0.006	0.028	0.026	0.012	0.006	0.79	116.67
	SMI	0.724	0.078	0.044	0.082	0.046	0.012	0.004	0.010	0.81	125.65
[CAI	0.680	0.106	0.070	0.076	0.040	0.016	0.008	0.004	0.78	104.51
	CAI+exposure	0.058	0.610	0.306	0.026	-	-	-	-	0.13	9.64
-	CAI+freeze	0.570	0.164	0.090	0.176	-	-	_	-	0.20	56.22
	CAI+SHOF	0.574	0.154	0.082	0.190	-	_	_	-	0.20	54.34
30	SMB	0.028	0.768	0.084	0.006	0.024	0.072	0.012	0.006	0.80	109.59
	SMI	0.658	0.066	0.062	0.084	0.068	0.040	0.012	0.010	0.81	117.84
_	CAI	0.600	0.086	0.084	0.116	0.060	0.038	0.006	0.010	0.60	93.97
	CAI+exposure	0.028	0.408	0.432	0.132	_	_	_	_	0.14	7.53
	CAI+freeze	0.436	0.186	0.084	0.294	-	-	_	-	0.20	51.30
	CAI+SHOF	0.430	0.188	0.082	0.300	-	-	-	-	0.20	48.75

Table 2 Exposure control of the six item selection methods under various conditions

- CAI + exposure method showed great potential for monitoring item exposure; however, it did not have the best measurement precision.
- Satisfy all the **constraints simultaneously** during item selection.
- The idea of the modified CAI methods can easily be extended to **multidimensional contexts** for item selection.
- The efficiency of item selection methods with different item exposure methods or **test overlap methods**.

谢谢大家
 提前拜个早年
 预祝新年快乐
 事事顺遂
 大吉大利
 :D
 The End © HYS 2020

Thanks for listening!

Reporter: Yingshi Huang