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Introduction

* The benefit of considering RT

— provide collateral information for the estimation of ability
— shed further light on the cognitive processes that led to the observed response

How to model RT and RA data?
) (X=xT=t|®@=60,H=1y)

* The assumption of independence

— standard IRT models: given the ability — the RA on different items
- the lognormal model: given the speed — the RT of different items
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 When considering both RA and RT data

How for each item RT & RA are related ?
) (x5 00,0) = f(x;10,7)f0,n)

Population Item Domain

Level 2

- RA model:
® (00 4 Bi)" (1 — D (6 + B;))

Level 1

- RT model:
In N (5 & — Ain, 0,;2)

Data U, T,




Introduction

 Residual associations between RA and RT

—speed up during the test
—a temporary lapse in concentration

— differential item functioning

Iy| - |Tk — change problem solving strategies

How to extend the hierarchical modeling framework for RT and RA
to allow for conditional dependence (CD) between the outcome variables?
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« Conditional Dependence (CD)

1. a bivariate distribution with a nonzero dependence parameter,
2. a marginal distribution of RT and a conditional distribution of RA given RT;
3. the marginal distribution of RA and the conditional distribution of RT given RA.
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1. A bivariate distribution with a nonzero dependence parameter

[ 6710, =Ny

l

X = I@ > 0) log-RT

E(z, |

e;ﬂ()g 9ﬂ1g) = ﬂOg + lglge

Pi

(55 L )
E&i —Ain |’ | pioi 10,-2

varies across items

P(xg =1] Q;ﬂOgHBlg) T JA:j‘(Zg |0;160g’ﬂ1g)dzg - (I)(ﬂOg +/61g0)

2. A marginal distribution of RT and a conditional distribution of RA given RT
S, 6 10,m) = 7@ 10, p|f (x; [£,0,n)

!

fxilt,0,n) =Y (%‘9 + Bio +|Bil

aCross person

varies across items

1

Int; — (& —

T

n

0;

W x) = D)5 (1 — D))

;xi)
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3. The marginal distribution of RA and the conditional distribution of RT given RA

fxiti10,m) = f(xi |0, |f (1 | xi, 0, n)

van der Linden and Glas (2010):
separate time intensity parameters for the correct and incorrect responses

- Why Is it important to consider correct responses separately
from incorrect responses?

# What are the benefits of doing so?
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« Correct and incorrect responses are likely the result of different response
processes

— a correct response:
successfully following the intended solution strategy

—an incorrect response:
following the intended solution strategy unsuccessfully
following a different solution strategy than the one intended
giving up on the item after trying one’s best
failing to attempt to solve the item (e.g., skipping)
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 Different residual variances
— RTs of correct responses: show more structural patterns
— incorrect responses: may have larger residual variances

 Different factor loadings
— RTs of correct responses: are more strongly related to the speed

- Different time intensities
— Same ab”ity and Speed levels: RTcorrect > RTincorrect or RTcorrect < RTincorrect

 Different speed latent variables
— facing with difficult items: long time or little time
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« Empirical support

— Semmes, Davidson and Close (2011)

correlations between ability and median RT:
no correlation for correct RTs & positive correlation for incorrect RTs

— van der Maas and Wagenmakers (2005)

ability is negatively correlated with the average correct RTs
not correlated with the average incorrect RTs

4

Purpose: propose a modeling framework in line with the third approach
model parameters are allowed to differ depending on the RA
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 The full model
f&xisti10,m) = f(x;10,m) f@ | )ik 0, 1)

- RA model: I \K RT model:
D (0 + Bi)" (1 — (e + i) In N (t;: & — Ain, 07)

How exactly the dependence of t; on x; is specified?

InN(t; i, — hix x> 01) = [ | %0, 0, 1)

only one speed (two-dim): 7y = 77,
two speed (three-dim): 7, # 74

2 2 2 2
9i0 = 9i1 %0 7 i1
gio =&i1 A0 = Ajl the standard HM = M M3p
Aio 7 Ait van der Linden ) )
&0 # &il rio = Al and Glas (2010)-' My Mayp
)\-1'0 7é )\il M?aa M4a
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 The full model
f&xisti10,m) = f(x;10,m) f@ | )ik 0, 1)

- RA model: I \k RT model:
O (i + i)' (1 — (i + Bi)' InN(G: & — Ain, o7)

InN (43 Eix; — hixi x> 0) = f(t: | xi, 0, 1)

only one speed (two-dim): 7y = 77,
two speed (three-dim): 7, # 74

* The joint distribution

- (9; 77) ~ N(ﬂ, Z) - (6, Mo 771) ~ N(u’ E)
_ [0 [ 1 2 0 1 XY, 243 0 onlv when & -
H3 Fis Zy3 Zag| 23z =1onlywhen Z#i,
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* Estimation

— estimated by sampling from the joint posterior distribution of the
model parameters

v’ point estimate: averages of the sampled values
v' 95% credible interval: the 2.5% and 97.5% percentiles of the sampled values

— (Posterior)~(Likelihood) (Prior)
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* Likelihood: for the two-dimensional model
fx,tla, B, X 0% pn )

N K
= 1_[//qu(aie+5j;xpj)1nN(tpi;$ixi _)\ixinx,fa O}le)NZ(Qaﬂaﬂ,z)den
p=1 i=1

» Likelihood: for the two-dimensional model

fx, t|la, B, &1 0%, 1, X)

N K
= H [ / / l_[ W (i + Bis xpi ) InN (tpis Eixy — Mix; M, Gl-zxi)N}(Q, no, N1; K, X)dddnodn;
p:l i=1
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* Prior: for the item parameters

— Independent semi-conjugate low-informative priors
fle. B.E. X, 07)

K
= [ [V (e 0, 100)N(B:;0,100%) || N(Eix; 0, 100°)N (Aix: 0, 100°)ZG (075 0.001, 0.001)
i=1 k={0,1)

* Prior: for the person parameters ) Gibbs Sampler
= (8,m0,m) ~N (1, 2)

v the mean vector and the covariance matrix are (partially) constrained

v' sample them freely but for each sample from the posterior rescale
all the parameters
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 Model Selection

— Akaike information criterion (AIC)
AlIC = -2In(likelihood function) + 2(numbers of parameters)
— Bayesian information criterion (BIC)

BIC = -2In(likelihood function) + In(n)(numbers of parameters)

l Bayesian estimation procedure

at the posterior mean of the parameters

4

MAIC & mBIC



Modeling the Differences Between Correct and Incorrect Responses 17

* The values of log-likelihood ' venjt = V2.
Vghj2 = /2(1 — 2A3%2)yh = fhzvghjl,
— two-dimensional models - o $2482 28,tu8n
Vgnjz = (2| X33 —

A =210 Sha—3lis 5
)y1+ﬂ3+ 13 A12 23 vgh + 23— 12413 vghj2
2,

A B = ’* A2 2 l‘ﬁfz 1‘2%2 12%
ln£2dim(“ ﬁ E , X125 X, t)
N We W
y‘y‘y\ \/_n\p(atvghjl‘|‘ﬁtaxpl)1nN(tp”§”1_ lxzvghfz’afxi)
p=1g=1 h= 1

- three-dimensional models

Fal Fal ~

n A2 & o o o n
In L34im (e, B, &, A, 07, Z12, 213, 223, Y33, (13; X, t)
N 10 10 10

~ y\y\y‘y \/—\ljh—jj—l_[lp (alvghjl ‘|'181axp:)lnj\/'(tph&xI — zxivghj(2+x£) A%Ci)

p=1g=1h=1 j=1
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* The number of parameters
Y 3 Az 2
ln£2dim(0‘aﬂ§ Z12; , 1)

In L3gim (&, B, . l Y12, 213, 23, X33, [13; X, )
— on the item side — on the population side
5K parameters one covariance with », = 7,
+ K with &,7# &, three covariances with 7, # 7,
+ K with 4,7 4, one freely estimated mean with 7, # 7, & &y=&;,

+ K with ¢%,# 6%, one freely estimated variance with 7, # #; & 4;p=4;;
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» Stepwise model selection

: . - _ 9 _ 9
Fit Mi:&o=E&n, Aio=Ai1, 0j5=07}

: _ 2 2
Fit Ma:&o#&n, Mio=Ai1, 0j=03

[Mg preferred over M7 }

yes

L . 2 o
Fit Msq:&io # &irs Aio 7# Ait, O =0

11

(Msa preferred over Mg?J

}-'ess

Flt Mda Sz[l?é‘-:zl )\307&/\11 J %O’

11O

1O

. . > ;9
Fit May:&o=Ei1, Aio=Ai1, 0 # 03

Flt M4b L,;U?éﬂ,zl /\10— 21 U %Jal
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 Posterior Predictive Check (PPC)
Whether the best two-dimensional model adequately captures the relevant patterns?

— the correlation between persons’ My ect jog-rT @A Mincorrect log-RT

1. calculated for the observed data and for G replicated data sets

2. p-value: the proportion of data sets in which the replicated statistic is
larger than the observed statistic

3. p-values close to 1 indicate model misfit: three-dim is needed
4. p-value is below a certain threshold (e.g., 0.95) indicate model fit well



Method

« Simulation Study 1. Parameter Recovery

—for the two-dimensional and three-dimensional models

« Simulation Study 2: Model Selection

—generate data under all twelve models

« Empirical Example: PIAAC Problem Solving

« Simulation Study Based on the Empirical Example
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 the baseline condition  extra conditions
— sample size = 1000 — twice as large (2000) and twice as small (500)
— number of items = 16 - 32 items
— correlation(s) between speed and ability =0 — correlation of 0.5
- In the case of the three-dimensional model: — larger correlation between the two speed (0.9)

correlation between the two speed = 0.7

 the item parameters # 16 unique item parameter combinations

the same item parameters were used twice with 32 items
- o;values: 0.5 and 1

- {0 &1} 1 {4, 4.1} and {4.1, 4}
- {0%,0%,} : {0.3, 0.2} and {0.2, 0.3}
— item intercept parameters f;: equally spaced between - 1.5 and 1.5
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* data sets

— the first five conditions:

500 data sets (both the two-dimensional and three-dimensional version of M,,)

— the last condition: 500 data sets (the three-dimensional M,,)
- RAdata: ® (0 + i) (1 — D (i + ;) ™

* person parameters

- N, (0,

- N3 (0,

212

AP
1

212
1
23

:|) for the conditions with 7, = 7,

213
23
1

:|) for the conditions with 7, # 74

 Estimation

— Gibbs Sampler with 6000 iterations
— burn-in: first 1000 iterations

e Evaluation

— the (average) absolute bias
— variance
- mean squared error
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Condition o ,ﬂ E A a E]z 213 223
Bias
no = Baseline 0.008 0.007 0.001 0.001 0.002 0.001 - -
N =500 0.021 0.014 0.002 0.002 0.003 0.001 - -
N = 2000 0.005 0.003 0.001 0.000  0.001 0.001 - -
K =32 0.008 0.006 0.001 0.001 0.002 0.000 - -
X2 =.5 0.009 0.007 0.001 0.001 0.002 0.004 - -
g # M Baseline 0.008 0.006 0.001 0.001 0.001 0.001 0.001 0.003
N =500 0.018 0.014 0.002 0.002 0.004 0.000 0.000  0.007
N = 2000 0.004  0.003 0.001 0.001 0.001 0.002 0.000 0.002
K =32 0.009 0.006 0.001 0.001 0.002 0.001 0.000 0.002
p=Z13=.5 0.010  0.007 0.001 0.001 0.002 0.002 0.001 0.001
¥)3=.9 0.011 0.008 0.001 0.001 0.001 0.000 0.002 0.011
Variance
ng =1 Baseline 0.006  0.004 0.001 0.001 0.001 0.001 - -
N =500 0.013 0.009 0.002 0.002 0.001 0.003 - -
N = 2000 0.003 0.002 0.000 0.001 0.000 0.001 - -
K =32 0.005 0.004 0.001 0.001 0.001 0.001 - -
Y¥12=235 0.007 0.004 0.001 0.001 0.001 0.001 - -
ng # M Baseline 0.007 0.004 0.001 0.001 0.001 0.002 0.002 0.001
N =500 0.014  0.009 0.002 0.002 0.001 0.003 0.004  0.001
N = 2000 0.003 0.002 0.001 0.001 0.000 0.001 0.001 0.000
K =32 0.005 0.004 0.001 0.001 0.001 0.001 0.001 0.000
Yi2=ZXZ13=.5 0.006  0.004 0.001 0.001 0.001 0.001 0.001 0.001
T3 =.9 0.007 0.004 0.001 0.001 0.001 0.002 0.002 0.000
Mean squared error
g = 1N Baseline 0.006] 0.004 0.001 0.001 0.001 0.001 - -
N =500 0.014] 0.009 0.002 0.002 0.001 0.003 - -
N = 2000 0.003 0.002 0.000 0.001 0.000 0.001 - -
K =32 0.005 0.004 0.001 0.001 0.001 0.001 - -
ip=.5 0.007 0.004 0.001 0.001 0.001 0.001 - -
no #= N Baseline 0.007 0.004 0.001 0.001 0.001 0.002 0.002 0.001
N =500 0.014] 0.010 0.002 0.002 0.001 0.003 0.004  0.001
N = 2000 0.003 0.002 0.001 0.001 0.000 0.001 0.001 0.000
K =32 0.005 0.004 0.001 0.001 0.001 0.001 0.001 0.000
22=X13=.5 0.006] 0.004 0.001 0.001 0.001 0.001 0.001 0.001
¥)3=.09 0.007 0.005 0.001 0.001 0.001 0.002 0.002 0.000
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Simulation Study 2: Model Selection

 model selection

- mAIC
- mBIC
— MAIC in combination with the posterior predictive check
— mBIC in combination with the posterior predictive check

Condition N K 223
A (baseline) 1000 20 7
B 1000 10 i
C 1000 40 i
D 500 20 i
E 2000 20 i
F 1000 20 9

Note: For each non-baseline condition the factor that differentiates it from the baseline condition is in bold.
Condition F was used only for the three-dimensional models.
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* data sets

— each condition 50 data sets were generated under each of the 12 models

* item parameters

- a; ~ N(1,0.2%)
- Bi ~ N(0,0.5%)
— equal time intensities condition, otherwise: A L 07
& ~ N(4,0.5%) [E0&i1]" ~ N> ([4_1] ,0.25 [0_7 . D
— equal factor loadings condition, otherwise:

A~ N(0.4,0.12) [A,-OA,.I]TwNz([M\/—} 001[1 0i7D

— equal residual variances condition, otherwise:
o? ~U(0.2,0.3) o3 ~1(0.2,0.3)andc? ~ U(0.15, 0.25)



Simulation Study 2: Model Selection

e person parameters « Estimation

— for the two-dimensional models: A5 (0, I) — Gibbs Sampler with 6000 iterations

. . — burn-in: first 1000 iterations
— for the three-dimensional models: A5 (i, X)

— each second iteration after the burn-in

p = 0 when &, # &, was used
-0
p = | 0 [wheny=¢;
0.1
[ 1 0 0
=10 1 223/+/X33 | when Ay # 4y
0 23/ X33 1

1 0 0
0 223/4/2334/0.8 0.8




Results

mAIC

mAIC and PPC

29

Condition Condition

True model P A B C D E F A B C D E F

nm=m M,j 5K +1 1 41 6 0 0 - 49 48 47 47 48 -
Mo 6K +1 0 39 4 0 0 - 49 45 48 50 49 -
Mz, TK+1 5 42 13 0 0 - 49 47 45 49 48 -
Mz, 6K +1 0 28 2 0 0 - 47 46 47 47 49 -
My, 8K +1 0 20 1 0 0 - 48 48 49 49 49 -
Myp TK +1 0 32 4 0 0 - 49 45 47 50 49 -

no = M,j 5K+5 49 46 49 50 50 50 49 46 49 50 50 42
Mo 6K +4 50 47 48 49 48 48 50 47 48 49 48 41
Mi, TK+3 50 50 50 50 49 48 50 49 50 50 49 43
My, 6K +5 50 49 49 50 50 50 50 47 49 50 50 47
My, 8K+3 49 48 50 50 50 50 50 45 45 50 50 43
My, TK+4 50 46 45 50 50 50 49 47 50 50 50 45

mBIC mBIC and PPC
Condition Condition

True model P A B C D E F A B C D E F

n=m M,j 5K+1 14 50 0 24 0 - 49 50 49 48 50 -
Mo 6K +1 3 50 0 20 0 - 49 50 48 50 50 -
Mz, TK+1 3 16 0 1 2 - 24 17 1 29 48 -
Mizp 6K +1 3 33 0 2 0 - 40 33 12 42 49 -
My, 8K +1 0 15 0 0 0 - 27 19 3 31 47 -
Myp TK +1 0 32 0 2 0 - 2 18 g 49 —

no#=mnm M 5K+5 50 50 50 50 50 50 43 37 48 41 48 45
Mo 6K +4 50 50 50 50 50 50 39 38 33 38 45 43
Mz, TK+3 12 10 10 3 41 16 7 3 3 7 20 14
Miyp, 6K +5 43 38 50 17 49 43 |43 38 17 50 49 41
My, 8K+3 19 9 17 0 44 40 |21 9 2 15 44 36
Myp TK+4 45 42 50 18 50 45 144 42 16 50 50 42

Note: P denotes the number of free parameters in the true model.
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* the Programme of International Assessment of Adult Competences (PIAAC)

- the problem solving in technology-based environments domain

— items are interactive and require a constructed response (no guessing parameter)
— two computer-based problem solving modules each consisting of 7 items (7 + 7 intotal)

— the problem solving modules + a module from a different domain
— both problem solving modules
(overall time limit of 30 minutes / module)

— data files: 12th of June 2018, Canada (the largest number of respondents, 10315)

* the RA scores

— the items were coded as correct/incorrect
— eigenvalues of the correlation matrix: one dimension should be sufficient
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1. the CI-HM (M, n, = n,)

— Gibbs Sampler with 20,000 iterations
(including 10,000 burn-in, and a thinning of 2 was applied)

whether the model adequately captured the differences between the RTs of correct and
Incorrect responses?

— Posterior predictive checks (100 replicated data sets)
D1: differences between My ect iog-rT @Nd Mincorrect log-RT
D2: the ratio between S2 ., qct 10g-rT ANA S%correct log-RT
D3: the ratio between the first eigenvalues of the correlation matrices of log-RTs computed
separately for correct and incorrect responses



Empirical Example

1. Results

— the observed ones,
D1 =0.338
D2 = 0.537
D3 =1.285

# In all of the 100 generated data sets:
v’ D1 & D3: smaller than the observed ones
v' D2: larger than the observed one

m) there s likely CD between RA and RT
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2. fitted two CD models

- the first model:

. _ ozi9-|-;3i 1 PiOi
f(xi , ti |9, 77) _Nz (|:$l — )Llnj| ’ |:pi0'i O'iz :|)

- the second model:

fCa,t160,n) = f@160,n) f(x;i[t4,0,n)

— Gibbs Samplers:
(20,000 iterations, including 10,000 burn-in, and a thinning of 2)
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2. Results

Model P mAIC D D> 1_33 Pl )22} P3

CI model (M1, no = n1) 71 234,633.3  0.215 0.779  0.811 .00 1.00 .00

CD model from approach 1 85 229,347.3  0.323  0.887  0.847 .00 1.00 .00

CD model from approach 2 99 228,351.8  0.322  0.819  0.837 .01 1.00 .00




Empirical Example

3. fitted the set of two-dim models and the set of three-dim models

— Gibbs Samplers:
(20,000 iterations, including 10,000 burn-in, and a thinning of 2)
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3. Results ) the observed ones: D1 = 0.338, D2 = 0.537, D3 = 1.285
Model P mAIC ﬁl [)2 1_33 Pl ) 2) P3
CI model (M, ng = 1) 71 2346333 0215 0779 0811 .00 1.00 .00

CD model from approach 1 85 229,347.3  0.323  0.887  0.847 .00 1.00 .00

CD model from approach 2 99 228,351.8  0.322  0.819  0.837 .01 1.00 .00
CD models from approach 3

Mo, ng = 85 227,699.7 0336  0.859  0.832 .36 1.00 .00
Mg, no = nj 99 225.809.6  0.335 0.707  0.650 32 1.00 .00
Mag, no = 01 113 218,993.7 | 0.336  0.549 1.240 .34 .94 .08
Mi,no #m 73 229,599.2  0.377  0.652  0.663 1.00 1.00 .00
Mo, nog #m 88 225,1945 0336  0.733  0.667 .34 1.00 .00
M3y, no # 11 101 224,114.3  0.336  0.693  0.796 29 1.00  0.00
Mag,no #m 105 216,824.9 | 0.337  0.541 1.250 40 .64 15

=) PpC (100 data sets): p-value of 1



Distributional assumptions check

e assumes a separate lognormal distribution for RT for the two RA outcomes

« examined the posterior distribution of the standardized residuals of log-RTs
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* three-dimensional M,
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Empirical Example

* three correlations between the person parameters

-0 and n,: -0.661 [-.642,-.679]
— persons who give fast incorrect responses generally having a lower ability level

-0 and n,: 0.038 [.005,.072]
— response speed and ability is much weaker

- n, and n,: 0.689 [.662,.714]

— the two speed latent variables are strongly associated but still only share less than
50% of their variance
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» the 95% credible intervals for relevant item properties
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Empirical Example

« quantify the strength and direction of the CD
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Empirical Example
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All persons

Estimate of ability in the three—dimensional Model 4a
-1

Estimate of ability in the conditional independence model

Difference in the estimates of ability
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Persons with all correct
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Estimate of speed in the conditional independence model



Simulation Study Based on the Empirical Example

« sample sizes:

— N =500, N = 1000, and N = 2000
— a condition with the same sample size (N = 10,245) and the pattern of missingness

 data generation.

— The RA: the 2PNO model
— The RT: the three-dimensional M,

e estimation:

— Gibbs Sampler
(6000 iterations, including 1000 burn-in, and a thinning of 2)



Results
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Condition o B 3 A o2 212 213 293
Bias
N =500 0.033 0.011 0.004 0.001 0.002 0.016 0.019 0.024
N = 1000 0.020 0.006 0.001 0.001 0.001 0.011 0.011 0.016
N = 2000 0.009 0.003 0.002 0.001 0.001 0.011 0.004 0.009
N = 10,245 0.004 0.001 0.001 0.001 0.000 0.005 0.005 0.006
Variance
N =500 0.019 0.010 0.002 0.002 0.001 0.001 0.004 0.002
N = 1000 0.009 0.005 0.001 0.001 0.001 0.001 0.002 0.001
N = 2000 0.004 0.002 0.000 0.000 0.000 0.000 0.001 0.000
N = 10,245 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000
Mean squared error
N =500 0.021 0.010 0.002 0.002 0.001 0.001 0.004 0.002
N = 1000 0.010 0.005 0.001 0.001 0.001 0.001 0.002 0.001
N = 2000 0.004 0.002 0.000 0.000 0.000 0.000 0.001 0.001
N = 10,245 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Note: The first three conditions have a complete design, and the last condition has an incomplete design with
the missingness patterns matching those in the empirical example.



Discussion

« proposed a framework to directly investigate the differences of RTs
between correct and incorrect responses

« all model parameters can generally be recovered well if the model is
correctly specified

* the mAIC with a posterior predictive check is well-suited for selecting
the correct model

 there may in practice be notable relevant differences between the models
for the RTs of correct and incorrect responses

* two speed latent variables were needed to best model the empirical data



Future directions 47

« other parametric forms for the RT model for correct and incorrect
responses could be explored

ability latent variable(s) is correctly specified,
ynfounding

nake it possible to deal with polytomously

« it is still assumed that RTs only provide collateral information for the
estimation of ability through the speed latent variable(s) in the model
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