

Cognitive Psychology Meets Psychometric Theory: On the Relation Between Process Models for Decision Making and Latent Variable Models for Individual Differences

Han L. J. van der Maas and Dylan Molenaar University of Amsterdam

Gunter Maris Cito, Arnhem, The Netherlands, and University of Amsterdam

> Rogier A. Kievit and Denny Borsboom University of Amsterdam

> > **Reporter: Huang Yingshi**

Let's begin with the item response theory

Thissen & Steinberg *C/EJEME* (2020)

- the item response model (e.g., 2PLM) $e^{\alpha(\theta-\beta)}$ $P_+ = \frac{c}{1 + e^{\alpha(\theta - \beta)}}$
	- \checkmark equating
	- \checkmark computer adaptive testing
	- \checkmark the investigation of differential item functioning

 \checkmark

3

• Which one would you choose for dinner?

Option A Contract Contra

а

z

 Ω

• Item response processes require the respondent to **make a decision**

In the two-choice response task: collect evidence for the response options

- \checkmark v: drift rate
- \checkmark σ: diffusion coefficient
- \checkmark a: boundary separation
- ✓z: starting point

Response time $T =$ nondecision time T_{er} + decision time DT

Option A

To model the probability of a correct response

• response process

✓ the probability distribution of **item responses** + the distribution of **response times**

- properties of the response times
- 1. time limit reduces \rightarrow boundary separation approaches $0 \rightarrow P_+ = 0.5$ for all $\theta_{\rm s}$

- Ability Testing:
	- − the dichotomies in the data result from **scoring (incorrect–correct)** rather than from a **two-choice situation**
	- − for M response options: 1/M
- properties of the response times
	- 2. the effect of changes in v

− In diffusion model: slowest when v ≈ 0

\n- − In IRT model:
$$
v = \theta - \beta
$$
\n- when $\theta = \beta$ → slowest
\n- when $\theta >> \beta & \theta << \beta \rightarrow \text{ vary fast}$
\n

Personality and attitude items

agree the death penalty is allowed

disagree

Ability tests

low ability individuals give the incorrect response **as fast as** high ability individuals give the correct response

• properties of the response times

3. item discrimination (which determined by boundary separation)

- In current psychometric theory
	- − individual differences:

the relation between the examinee *i* and other test takers

- In the diffusion model
	- − Parameters at play in the actual process that a single individual follows when answering a test item

What is ability at the level of an individual?

- 1. the ability: present or absent (cannot be negative)
	- − a capacity to do something
- 2. the difficulties: essentially positive as well
	- − any task that can be said to measure this ability requires some of the ability
- 3. the drift rate: always positive
	- − task can be carried out by any individual who possesses the ability if only the individual is given sufficient time
	- − i.e., P+ = 1 if time limits are absent
- 1. if there are time limits:
	- − high ability examinee: higher probability for success
- 2. if there are no time limits:
	- − high ability examinee: complete that task faster
- 3. in the general situation:
	- − speed–accuracy trade-off: individual differences in both the probability and the time
- the diffusion model
	- − no **clear separation** between person and item parameters

For drift rate:

 $v = f(v^p, v^i)$ \longrightarrow ability & difficulty

For boundary separation:

 $a = g(a^p, a^i) \implies$ response caution & time pressure

- 1. v and a must be positive
- 2. P+ monotonically increasing in v^p and monotonically decreasing in vⁱ
- 3. $P+ = 1$ when: v^p approaches infinity or v^i approaches 0
- 4. $P+$ = chance level when: v^i approaches infinity or v^p approaches 0
- the sequential sampling based item response model
	- − Newtonian relation:

 $v = P/F$

speed (drift rate) = power (ability) / force (difficulty)

$$
v = v^{p}/v^{i}
$$
\n
$$
a = a^{p}/a^{i}
$$
\n
$$
P_{+} = \frac{e^{av}}{1 + e^{av}} = \frac{e^{\frac{a_{k}^{2}v_{k}^{2}}{a_{j}^{2}v_{j}^{2}}}}{1 + e^{\frac{a_{k}^{2}v_{k}^{2}}{a_{j}^{2}v_{j}^{2}}}}
$$

- ✓ positive *v* & positive *a*
- \checkmark inverse proportion
- \checkmark time limit:

larger (P+ \rightarrow chance level 0.5) & smaller (P+ \rightarrow 1)

- tests with multiple response options
	- − nominal response model

Which one would you choose for dinner? $(M = 3)$

assume:

- 1. $m = M$ is the correct answer
- 2. incorrect alternatives are all equally attractive (set $\alpha_1^* \ldots \alpha_{M-1}^*$ and $\beta_1^* \ldots \beta_{M-1}^*$ to zero)

$$
P_m = \frac{e^{\beta_m^* + \alpha_m^* \theta}}{(M-1)e^{\theta + \theta} + e^{\beta_m^* + \alpha_m^* \theta}} = \frac{e^{\beta_m^* + a_m^* \theta}}{(M-1) + e^{\beta_m^* + \alpha_m^* \theta}} = \frac{e^{\beta_m^* + \alpha_m^* \theta}}{e^{\ln(M-1)}} = \frac{e^{\beta_m^* + \alpha_m^* \theta}}{e^{\ln(M-1)} + e^{\beta_m^* + \alpha_m^* \theta}} = \frac{e^{\beta_m^* + \alpha_m^* \theta - \ln(M-1)}}{1 + e^{\beta_m^* + \alpha_m^* \theta - \ln(M-1)}}
$$

- tests with multiple response options
	- − apply to the positive ability model

- the Q-diffusion model (QM)
	- − the quotient model on a diffusion model basis

$$
\theta_k = a_k^p v_k^p
$$

- two factors have different effects on response time
	- − response caution ∝ RT
	- − information power ∝ 1/RT
- response time distribution

$$
\log(RT_{kj}) \sim \text{normal}(\mu_{kj}, \sigma_{kj}^2)
$$
\n
$$
u_{kj} = \log[E(RT_{kj})] - \frac{1}{2} \left[1 + \frac{\text{var}(RT_{kj})}{E(RT_{kj})^2} \right]
$$
\n
$$
\text{and elements}
$$
\n
$$
\sigma_{kj}^2 = \log \left[1 + \frac{\text{var}(RT_{kj})}{E(RT_{kj})^2} \right]
$$
\n
$$
\text{model parameters}
$$
\n
$$
\sigma_{kj}^2 = \log \left[1 + \frac{\text{var}(RT_{kj})}{E(RT_{kj})^2} \right]
$$
\n
$$
h_{kj} = -\frac{v_k^p a_k^p}{v_j^j a_j^j}
$$
\n
$$
h_{kj} = -\frac{v_k^p a_k^p}{v_j^j a_j^j}
$$

Compare with the Rasch model with guessing (DM-G) 21

 -2

0

θ

1.5

 2.0

 2.5

 3.0

 0.0

 0.5

 1.0

 $\pmb{\theta}$

2

6

• Example 1: Mental Rotation

- − 121 subjects in the context of a mental rotation task
- − Responses were dichotomous (correct vs. incorrect)
- − 10 items with three different rotation angles (50°, 100°, 150°)

− Estimation:

- ➢ without response time: **fit statistics** only for a comparison with standard IRT models
- ➢ with response time: **predicted and observed RT** MCMC - sample from the posterior distribution (uninformative priors)

Fit Statistics for the Q-Diffusion Item Response Model and Several Standard Item Response Models

High degree of equivalence for the mental rotation data 24

- Example 2: Chess puzzles
	- − a multiple-choice format with an unknown number of options
	- − external criterion: Elo ratings
	- − consist of many different abilities
	- − 20 chess items
	- − estimation: with response time (full model)

Correlations of the Standard Test Statistics, Person Estimates According to the 1PL and 2PL Models, and the Q-Diffusion Parameters Person Drift Rate (v), Response Caution (a), and Nondecision Time $(T_{e\nu})$, With the Elo Ratings and Ages of Chess Players

Person	Test score	Response time	$1PL$ θ	2PL θ			$^{\prime}$ er
Elo rating	0.68	-0.44	0.67	0.69	0.72	-0.38	-0.17
Age	-0.35	0.54	-0.35	-0.33	-0.34	0.24	0.60

Fit Statistics for the Q-Diffusion Item Response Model and Several Standard Item Response Models

Compare with the hierarchical approach

• In the hierarchical model

− latent construct: response time is the ratio of amount of labor and speed

 $E[\ln(RT_{ik})] = \xi_i - \tau_k$

• In the Q-diffusion model

- − process parameters:
	- not defined by their effects on the probability of response and time

$$
E(DT) = \frac{a}{2v} \frac{1 - e^{-av}}{1 + e^{-av}}
$$

for reasonably high values of av (P+ close to 0/1)

$$
\approx \frac{a}{2v} = \frac{1}{2} \frac{a_k^p/a_j^i}{v_k^p/v_j^i} = \frac{1}{2} \frac{v_j^i/a_j^i}{v_k^p/a_k^p}
$$

$$
E(\ln(DT)) = \xi_j - \tau_k \approx -\ln(2) + \ln \frac{v_j^i}{a_j^i} - \ln \frac{v_k^p}{a_k^p}
$$

$$
\xi_j \approx \ln \frac{v_j^i}{a_j^i}, \tau_k \approx \ln \frac{v_k^p}{a_k^p}
$$

- \checkmark positive correlation: primarily due to differences in v_k^p
- \checkmark negative correlation: primarily due to differences in a_k^p

$$
E(DT) = \frac{a}{2v} \frac{1 - e^{-av}}{1 + e^{-av}}
$$

for reasonably high values of av (P+ close to 0/1)
units of information
units information per seconds

$$
\frac{a}{2v}
$$
 massured in seconds
for response caution: dimensionless quantity / time pressure

re: units of information $= \frac{\partial}{\partial} \frac{\partial}{\partial x_i} \frac{\partial}{\partial y_i}$ speed measure

- a causal mechanism for the item response model: the Q-diffusion model
	- \checkmark ability scale with natural zero point
	- \checkmark incorporate guessing as part of the decision process
	- \checkmark incorporate difficulty into discrimination parameter
	- \checkmark find relation to the hierarchical model

• a conjunctive multidimensional or multicomponent Q-diffusion model

• integrate these the cognitive diagnostic model and the Q-diffusion model through the construction of hierarchical models

• formulate the response time in the multiple-choice situation

Thank you for listening!