PSYCHOMETRIKA 2014 DOI: 10.1007/s11336-013-9396-3

THE LOGNORMAL RACE: A COGNITIVE-PROCESS MODEL OF CHOICE AND LATENCY WITH DESIRABLE PSYCHOMETRIC PROPERTIES

Jeffrey N. Rouder AND Jordan M. Province UNIVERSITY OF MISSOURI

Richard D. Morey UNIVERSITY OF GRONINGEN

Pablo Gomez DEPAUL UNIVERSITY

Andrew Heathcote UNIVERSITY OF NEWCASTLE

Reporter: Yingshi Huang

Introduction

- human performance data
	- − measure individual abilities
	- − measure the effects of covariates
	- − assess latent structure

A best model should address the question of how these item responses are generated.

A best model is built on desirable statistical properties with measurement-theoretic assumptions.

Introduction

- human performance data
	- − measure individual abilities
	- − measure the effects of covariates
	- − assess latent structure
	- 1. cognitive-process models
		- \checkmark incorporate theoretical insights

 \checkmark to draw inferences about the processes and mental representations

- 2. psychometric models
	- \checkmark retain desirable statistical properties
	- \checkmark to incorporate covariates and understand variation in latent traits and abilities

Purpose: develop a cognitive psychometrics model

finer process, but complex

statistically tractable, but coarse

Modeling Response Time and Response Choice Jointly 4

- psychometric approach:
	- 1. place separate regression models on choice and RT
	- 2. allow RT / choice to be a covariate on the other one or share latent parameters

 $p_i(\theta_i) = [1 + \exp(\theta_i - \ln \tau_i - b_i)]^{-\pi_i}$ $\ln T_{ij} = \mu + \tau_i + \beta_i - \rho(a_i\theta_i - b_i) + \varepsilon_{ij}$

- cognitive-process approach:
	- − the diffusion model

$$
f_{X,T}(x,t) = \frac{\pi \sigma^2}{\alpha^2} \exp\left(\frac{(\alpha x - z)(\theta + \beta)}{\sigma^2} - \frac{(\theta + \beta)^2}{2\sigma^2}(t - T_{er})\right)
$$

$$
\times \sum_{m=1}^{\infty} m \sin\left(\frac{\pi m(\alpha x - 2zx + z)}{\alpha}\right) \exp\left(-\frac{1}{2}\frac{\pi^2 \sigma^2 m^2}{\alpha^2}(t - T_{er})\right)
$$

Modeling Response Time and Response Choice Jointly 5

- adapting the diffusion model for psychometric settings
	- − Tuerlinckx and De Boek (2005)

$$
P_{+} = P(X = 1) = \frac{e^{-2zv} - 1}{e^{-2av} - 1} = \frac{e^{av}}{1 + e^{av}}
$$

− van der Mass et al. (2011)

$$
P_{+} = \frac{e^{av}}{1 + e^{av}} = \frac{e^{\frac{a_k^p v_k^p}{a_j^i v_j^i}}}{1 + e^{\frac{a_k^p v_k^p}{a_j^i v_j^i}}}
$$

− Boehm et al. (2021)

$$
\mathbb{P}(X=1) = \frac{1}{1 + \exp\left(-\frac{v_{ip}}{cs_i}\right)}
$$

- \Box test with an arbitrary number of choices
- \Box the complexity of a multidimensional
- diffusion process
- \Box the likelihood is not easily analyzed
- \Box not clear whether more complex models may be placed on parameters

Specification of the Base Lognormal Race Model 6

- a simpler and more tractable cognitive process:
	- − a race between accumulators

$$
\begin{array}{ccc}\n & T = D / V & D \sim B + U(0, A) \\
V \sim N(v, sv) & \sim e^{N(\mu_d, \sigma_d^2)} \\
& \sim e^{N(\mu_v, \sigma_v^2)}\n\end{array}
$$

− the fastest accumulator indicates the finishing time

$$
x_j = m \iff y_{mj} = \min_i (y_{ij}) \sim e^{N(\mu_d - \mu_v, \sigma_d^2 + \sigma_v^2)} = e^{N(\mu_v, \sigma^2)}
$$

$$
t_j = \psi + \min_i (y_{ij}) \overset{\text{ind}}{\sim} \text{Lognormal}(\mu_i, \sigma_i^2)
$$

the joint density function:

$$
f(m, t) = g\big(t - \psi; \mu_m, \sigma_m^2\big) \prod_{i \neq m} \big(1 - G\big(t - \psi; \mu_i, \sigma_i^2\big)\big)
$$

Heathcote & Love, 2012 *Front Psychol*

Bayesian Analysis of the Base Model 7

- MCMC of the joint posterior distribution with Gibbs sampler
	- 1. prior specification
		- $\pi(\psi) \propto 1$ $\sigma_i^2 \stackrel{\text{ind}}{\sim}$ Inverse-Gamma (a_i, b_i) $\mu_i \stackrel{\text{ind}}{\sim} \text{Normal}(c_i, d_i)$
	- 2. sampling from the conditional posterior distribution
		- $\overline{}$ conveniently expressed when conditioned on latent finishing times y_{ij}
		- − let $z_{ij} = \log y_{ij}$ and then $\bar{z}_i = J^{-1} \sum_j z_{ij}$

$$
\mu_i \mid \cdots \sim \text{Normal}(v_i \left[J\bar{z}_i / \sigma_i^2 + c_i / d_i \right], v_i) \qquad v_i = \left(J / \sigma_i^2 + 1 / d_i \right)^{-1}
$$
\n
$$
\sigma_i^2 \mid \cdots \sim \text{Inverse-Gamma}\left(a_i + J/2, b_i + \sum_j (z_{ij} - \mu_i)^2 / 2\right)
$$
\n
$$
\left(\prod_{i \in \mathcal{I}} \left(y_{i} : j \in \mathcal{N}^2 \right) \right) \qquad \text{if } \epsilon \text{ min} : (y_i : j \in \mathcal{N}^2 \text{ and } \epsilon \text{ is a constant})
$$

does not correspond to a known distribution $f(\psi | \cdots) \propto \begin{cases} 1 & \text{if } i_j \text{ is } \forall i_j = \psi, \mu_i, \sigma_i^-, & \psi < \min_{ij}(\mathbf{y}_{ij}) \\ 0, & \text{otherwise} \end{cases}$ (Metropolis step with a symmetric normal random walk) − assume the *i* th accumulator finished first

$$
(z_{ij} | x_j = i, \ldots) = \log(t_j - \psi)
$$

$$
(z_{ij} | x_j \neq i, \ldots) \sim \text{Truncated Normal}(\mu_i, \sigma_i^2, \log(t_j - \psi))
$$

- model comparison
	- − the deviance information criterion [DIC]
		- 1. after each iteration in Gibbs sampling:

$$
D^{(g)} = -2 \ln \left(f(m, t) = g(t - \psi^{(g)}; \mu_m^{(g)} \sigma_m^2) \prod_{i \neq m} \left(1 - G(t - \psi^{(g)}; \mu_i^{(g)} \sigma_i^2) \right) \right)
$$

\n
$$
\bar{D} = \frac{\sum_g D^{(g)}}{G} \qquad D(\bar{\theta})
$$

\n
$$
\bar{D} = \frac{\sum_g D^{(g)}}{D} \left(1 - \bar{D} \left(1 - \bar{D}
$$

2. for the posterior mean:

$$
D(\bar{\theta}) = -2\ln\left(f(m,t) = g\left(t - \psi; \mu_m, \sigma_m^2\right) \prod_{i \neq m} \left(1 - G\left(t - \psi; \mu_i, \sigma_i^2\right)\right)\right)
$$

Application I: for Testing 9

- a Rasch-Like IRT Model
	- $-$ place backend model on the log finishing times z_{ij}

$$
x_{jk} = m \iff z_{mjk} = \min_{i} (z_{ijk})
$$

\n
$$
t_{jk} = \psi_k + \exp\left(\min_{i} (z_{ijk})\right)
$$

\nability
\n
$$
- z_{ijk} = \boxed{\alpha_{ij}} - \delta_{ij}\boxed{\beta_k} + \epsilon_{ijk}
$$
 if *i* is the correct choice
\n
$$
z_{ijk} = \alpha_{ij} - \beta_k + \epsilon_{ijk}
$$

\ndifficulty
\n
$$
z_{ijk} = \alpha_{ij} + \epsilon_{ijk}
$$

− for the kth examinee:

$$
z_k = (z_{11k},\ldots,z_{n1k},z_{12k},\ldots,z_{nJk})'
$$

across all examinees: $z = (z'_1, \ldots, z'_K)'$ $\alpha = (\alpha_{11}, \ldots, \alpha_{n1}, \alpha_{1J}, \ldots, \alpha_{nJ})'$ and $\beta = (\beta_1, \ldots, \beta_K)'$

• priors and posteriors

 $(z_{ij} | x_j = i, ...) = log(t_j - \psi)$ $z_{ijk} = \alpha_{ij} - \delta_{ij} \beta_k + \epsilon_{ijk}$

 \star iid normally distributed zero-centered with variance σ^2 be modeled as random effect (with a hierarchical prior): $\beta \mid \sigma_{\beta}^2 \sim \text{Normal}(0, \sigma_{\beta}^2 I)$ $\sigma_{\beta}^2 \sim$ Inverse-Gamma (a, b)

− treat **α** and **β** as a single vector:

 $z = X\theta + \epsilon$ $X = (X_{\alpha}, X_{\beta})$

```
\theta \mid \cdots \sim \text{Normal}(\phi q, \phi) \phi = (X'X/\sigma^2 + B)^{-1}\checkmark prior precision: \mathbf{B} = \text{diag}(\mathbf{1}_{nJ}/d, \mathbf{1}_K/\sigma^2)\checkmark prior mean: \mu_0 = (c\mathbf{1}_{nJ}, \mathbf{0}_K)'q = X'z/\sigma^2 + B\mu_0\sigma^2 | \cdots \sim Inverse-Gamma(a_1 + nJK/2, b_1 + (z - X\theta)'(z - X\theta)/2)\sigma_{\beta}^2 | \cdots Then I are Gamma(a + K/2, b + \beta' \beta / 2)
```
 $-$ set $c = 0$ and $d = 5$

 $\theta = (\alpha', \beta')'$

 $-$ weakly informative: $a = a1 = 1$ and $b = b1 = 0.1$

Whether the model can be analyzed efficiently

- simulated data set
	- − 80 people
	- − 80 items (three response options)
	- − true shift values: $\psi_k \stackrel{\text{iid}}{\sim} \text{Unif}(1, 2)$

− MCMC:

5 runs of 5,000 iterations a burn-in period of 500

Results 12

Results 13

• compared with the Rasch model

Correlations between ground truth and estimates of participant and item effects.

Upper and lower triangle are correlations for participant and item effects, respectively.

Application II: for experimental psychology 14

• lexical decision task

− the data set:

93 participants each performing 720 trials

- − nonword: substitution conditions (5) e.g., TREE \rightarrow PREE transposition conditions (7)
	- e.g., JUDGE \rightarrow JUGDE

− word:

frequency of occurrence (3) e.g., CITY & AJAR

Model Specification 15

- autoregressive process: to model the trial order
	- $-x_{jk} = 1$ (word) or 2 (nonword)

 z_{1k} and z_{2k} : latent log finishing times for the two accumulators (720 \times 1)

 μ_{1k} and μ_{2k} : participant-specific condition means (15 \times 1)

 X_k : maps trials into the 15 experimental conditions (720 \times 15)

residuals: $\boldsymbol{u}_{ik} = z_{ik} - X_k \boldsymbol{\mu}_{ik}$ (720×720)

noise terms:
 $\epsilon_{ik} = A_k u_{ik}$
 $A_k = \begin{bmatrix}\n1 & 0 & 0 & \cdots & 0 & 0 \\
-\rho & 1 & \ddots & \ddots & & 0 \\
0 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & -\rho & 1\n\end{bmatrix}$ − first order autoregressive model $u_{ijk} = \rho u_{i,j-1,k} + \epsilon_{ijk}$ $\epsilon_{ijk} \stackrel{\text{iid}}{\sim} \text{Normal}(0, \sigma^2)$ $|\rho|$ < 1 $u_{i,0,k} = 0$

• the joint expression

$$
\epsilon_{ik} = A_k u_{ik}
$$
\n
$$
A_k = \begin{bmatrix}\n1 & 0 & 0 & \cdots & 0 & 0 \\
-\rho & 1 & \ddots & \ddots & & 0 \\
0 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 1 & 0 \\
0 & 0 & \cdots & 0 & -\rho & 1\n\end{bmatrix}
$$
\nthe inverse matrix\n
$$
L_k = \begin{bmatrix}\n1 & 0 & 0 & \cdots & 0 & 0 \\
\rho & 1 & \ddots & \ddots & 0 \\
\rho^2 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 1 & 0 \\
\rho^{J_k - 2} & \ddots & \ddots & \ddots & 1 & 0 \\
\rho^{J_k - 2} & \ddots & \ddots & \ddots & 1 & 0 \\
\rho^{J_k - 2} & \ddots & \ddots & \ddots & 1 & 0 \\
\rho^{J_k - 2} & \ddots & \ddots & \ddots & 1 & 0 \\
\rho^{J_k - 2} & \rho^{J_k - 2} & \cdots & \rho^2 & \rho & 1\n\end{bmatrix}
$$
\n
$$
u_{ik} = L_k \epsilon_{ik}
$$
\nthe joint distribution:\n
$$
u_{ik} \sim \text{Normal}(0, \Sigma_k)
$$
\n
$$
z_{1k} \sim \text{Normal}(X_k u_k, \Sigma_k)
$$
\n
$$
z_{2k} \sim \text{Normal}(X_k u_k, \Sigma_k)
$$
\nnonzero, off-diagonal elements

Analysis 17

- 1. sampling the conditional posterior values of log finishing times
	- − the winning accumulator:
		- $z_{ijk} = \log(t_{jk} \psi_k)$
	- − the losing accumulator:

 z_{ijk} | \cdots \sim Truncated-Normal(E[z_{ijk}] + $\rho u_{i,j-1,k}$, σ^2 , z_{i} _{ik})

- 2. sampling the vectors of parameters and hyperparameters given the log finishing times
	- − the autoregressive parameter:

$$
\rho \mid \cdots \sim \text{Truncated-Normal}_{(-1,1)}\big(m'/v', \sigma^2/v'\big)
$$

$$
m' = \sum_{i=1}^{2} \sum_{k=1}^{K} \sum_{j=1}^{J_k - 1} u_{ijk} u_{i,j+1,k}
$$

$$
v' = \sum_{i=1}^{2} \sum_{k=1}^{K} \sum_{j=1}^{J_k - 1} u_{ijk}^2
$$

Results: mixing 18

Results: model fit 19

Results: parameter estimates 20

Results: parameter estimates 21

DIC (without shift) = $-68,879 >$ DIC (with shift) = $-77,374$

Discussion

- decision making process
	- − arising from a race between competing evidence-accumulation

- straightforward to place sophisticated model components
	- − IRT model & autoregressive model

Limitations 23

- bounds and accumulation rates cannot be disentangled
	- \sim set bounds to constant 1: $y \sim$ Lognormal (μ, σ^2) $\mu = -\mu_v$ and $\sigma^2 = \sigma_v^2$
	- − specific parametric assumptions are needed to identify decision bounds
- highly accurate responses
	- − the incorrect accumulators will largely reflect prior assumptions
- the additional development for a shift parameter
	- − the inclusion of a Metropolis step & the impact on mixing under certain circumstances

THANKS FOR YOUR ATTENTION!

REPORTER

YINGSHI HUANG