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Introduction

− Identifying a profile of strengths and weakness on assessed skills

2

• Cognitive diagnosis model (CDM)

− Mastery: skills that are completed with accuracy

Mastery = accuracy in a skill + complete the task with fluency

The 2PLM ???
The GRM & NRM ???
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• Cognitive diagnosis model (CDM)

− Mastery: skills that are completed with accuracy

Mastery = accuracy in a skill + complete the task with fluency

• What is fluency?

[De Boeck et al. 2017 BJMSP]

− Speed: spontaneous speed & imposed speed 

+

accuracy

• The aim of this study:

− further advance the current CDM to measure fluency directly
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− latent trait models

− CDM: categorical trait, 1 indicating accuracy in the skill and 0 indicating otherwise

• Response accuracy

• Response time

− pure response time models

− joint models for response times and other variables

− local dependency models

− response time as covariate

within the IRT framework

De Boeck & Jeon, 2019 Front Psychol
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− Zhan et al. (2018) & Wang et al. (2020, 2018b, 2019) 

• CDM & response time

utilizing response times as ancillary information to improve the measurement accuracy 



CDM for Fluency 6

1. a specific relationship between accuracy and speed

→ speed tends to improve as accuracy reaches some level of proficiency

2. an automatic process

→ a fast, correct response represents a higher skill level

• How to directly measure the fluency?

3. defining fluency as the highest level of a polytomous CDM

→ three attribute levels:

: low accuracy

: high response accuracy but slow speed on correct answers

: high response accuracy and fast speed on correct answers



CDM for Fluency 7

• Response accuracy

− J test questions to measure K latent skills

− N test takers

− response time: Lij

− response accuracy: Yij

− Q matrix for item j :

− latent attribute for examinee i :

a conjunctive model:

with
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• Response time

− a conditional model:

→ consider response times on correct responses only

→ avoid the confounding influence from the fast but inaccurate responses

individual speed change parameter > 0 monotonic function that represents the influence from

same base speed

different base speeds
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Model Estimation 10

• Likelihood function

− for the joint model using response time model 2:

mean:

variance:

mean: 0

variance:

− for the joint model using response time model 3:

mean:
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• Following a principle of conjugate priors 

− take the variance of speed for model 2 as an example

(restrict μτ = 0 to fix the location of the latent continuous variables)
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• The full conditional distributions
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• The full conditional distributions
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• The full conditional distributions



Real Data Application 16

• a computer-based mental rotation learning program

− 351 participants’ response times and responses to 10 items

− four attributes were measured:

α1(90° x-axis), α2(90° y-axis), α3(180° x-axis) and α4(180° y-axis)



The Distribution of Log (Response Time) of Correct Response 17



Model Selections 18

• CDM fluency models:

• baseline models:

− response accuracy: model 1

− response time model: model 2 or model 3

− covariate function                : or

1. DINA model for responses and lognormal model for response times

2. Model 1 fitted to only responses

• evaluation criteria:

− model convergence: PSRF

− model comparison: the deviance information criteria (DIC)



The PSRF for the Most Complicated Model 19



The Deviance Information Criteria 20



Fluency Model 2 Result 21
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Is the Proposed Fluency Model More Informative? 23
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Simulations Based on Real Data Conditions 25

• How information from correct response times can improve the 
classification accuracy?

− the true model parameters: the estimated values from the real data application

− data generation: 351 students’ responses to 10 questions

1. true model: model 1 + model 2 (covariate function as             )

2. true model: model 1

− evaluation criteria: the attribute-wise agreement rate (AAR)



The Attribute-wise Classification Accuracy 26
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• Simulation conditions:

− the sample size (N): 500, 1000

− the test length (J): 20, 40

− the true distribution for     :

− the item parameters for the response model (g, s1, s2):

small measurement errors        → (0.1, 0.2, 0.1)

moderate measurement errors → (0.1, 0.5, 0.1)

− the data generation model

→ 2.7s – 4.5s

→ 1.5s – 2.0s

5
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• Simulation conditions:

− the number of attributes: 4 (possible states 3^4)

− the response time model parameters:

a from N(3.5, 0.5)

γ from uniform (2,4)

− the speed parameter:

for models 1 & 2:

for models 3 & 4:

• Evaluation criteria:

− the MCMC chain convergence: the maximum PSRF

− the parameter recovery: AAR & PAR & correlation & deviation (median, proportion)
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Discussion 36

− enable teachers to instruct students to work on reinforcing the accurate 
albeit not yet fluent skills

• this study offers a new view to measure skill accuracy and fluency

• the proposed joint models were able to reveal more information regarding 
test takers’ spatial skills

• further improvement:

− considering response heterogeneity (mixture model or nonlinear assumptions)

− investigating the issue of local dependencies between response accuracy and time 
within items

− relaxing some restrict assumptions 
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