PSYCHOMETRIKA-VOL. 85, NO. 3, 600-629 **SEPTEMBER 2020** https://doi.org/10.1007/s11336-020-09717-2

USING RESPONSE TIMES AND RESPONSE ACCURACY TO MEASURE FLUENCY WITHIN COGNITIVE DIAGNOSIS MODELS

SHIYU WANG UNIVERSITY OF GEORGIA

YINGHAN CHEN UNIVERSITY OF NEVADA, RENO

Reporter: Yingshi Huang

Introduction

- Cognitive diagnosis model (CDM)
	- − Identifying a profile of strengths and weakness on assessed skills
	- − Mastery: skills that are completed with accuracy

Mastery = $\arccos y$ in a skill + complete the task with fluency

The 2PLM ???
 $P(\theta) = \frac{\exp(Da_j(\theta_i - b_j))}{\exp(Da_j(\theta_i - b_j))}$ $P^*_{ix}(\theta) = \frac{\exp[Da_i(\theta - b_{ix})]}{1 + \exp[Da_i(\theta - b_{ix})]}$ $P_j(\theta_i) = \frac{\exp(Da_j(\theta_i - b_j))}{1 + \exp(Da_j(\theta_i - b_j))}$ \overline{O}

 $P_{ix}(\theta) = P_{ix}^*(\theta) - P_{i,x+1}^*(\theta)$ $P_{ix}(\theta) = \frac{\exp(c_{ix} + a_{ix}\theta)}{\sum_{i} \exp(c_{ih} + a_{ih}\theta)}$

Introduction

- Cognitive diagnosis model (CDM)
	- − Identifying a profile of strengths and weakness on assessed skills
	- − Mastery: skills that are completed with accuracy

Mastery = $\arccos y$ in a skill + complete the task with fluency

- What is fluency?
	- − Speed: spontaneous speed & imposed speed

+ accuracy

- The aim of this study:
	- − further advance the current CDM to **measure fluency directly**

[De Boeck et al. 2017 *BJMSP*]

- Response accuracy
	- − latent trait models
	- − CDM: categorical trait, 1 indicating accuracy in the skill and 0 indicating otherwise
- Response time
	- − pure response time models T_{pi} ←
	- − joint models for response times and other variables $[T_{pi}, A_{pi}]$ ←
	- − local dependency models $([T_{pi} \leftrightarrow A_{pi}]) \leftarrow$
	- − response time as covariate A_{pi} ← T_{pi}

Introduction

• CDM & response time

− Zhan et al. (2018) & Wang et al. (2020, 2018b, 2019)

utilizing response times as ancillary information to improve the measurement accuracy

CDM for Fluency

- How to directly measure the fluency?
	- 1. a specific relationship between accuracy and speed
		- \rightarrow speed tends to improve as accuracy reaches some level of proficiency
	- 2. an automatic process
		- \rightarrow a fast, correct response represents a higher skill level
	- **3. defining fluency as the highest level of a polytomous CDM**
		- \rightarrow three attribute levels:
			- $\alpha_{ik} = 0$: low accuracy
			- $\alpha_{ik} = 1$: high response accuracy but slow speed on correct answers
			- $\alpha_{ik} = 2$: high response accuracy and fast speed on correct answers
- Response accuracy
	- − *J* test questions to measure *K* latent skills
	- − *N* test takers
	- − response time: *Lij*
	- − response accuracy: *Yij*
	- $\mathbf -$ Q matrix for item *j* : $\mathbf q_j = (q_{j1}, \ldots, q_{jK})^T$
	- − latent attribute for examinee i : $\alpha_i = (\alpha_{i1}, \ldots, \alpha_{iK})^T$

a conjunctive model: $\eta_{ij} := \eta_{ij}(\alpha_i, \mathbf{q}_j) = 1_{\{\forall k, q_{jk}=1, \alpha_{ik}=q_{jk}\}} + 1_{\{\forall k, q_{jk}=1, \alpha_{ik}>q_{jk}\}}$

$$
P(Y_{ij} = 1 | \boldsymbol{\alpha}_i) = \begin{cases} g_j, & \text{if } \eta_{ij} = 0 \\ 1 - s_{1j}, & \text{if } \eta_{ij} = 1 \\ 1 - s_{2j}, & \text{if } \eta_{ij} = 2 \end{cases} \quad \text{with} \quad 0 < g_j < 1 - s_{1j} < 1 - s_{2j} < 1 \tag{1}
$$

• Response time

− **a conditional model:**

 \rightarrow consider response times on correct responses only

same base speed

 \rightarrow avoid the confounding influence from the fast but inaccurate responses

$$
\Box \log(L_{ij}) \sim \begin{cases} N(\gamma_j - (\tau_i) + \phi_i \times g(\alpha_i, \mathbf{q}_j)), \frac{1}{a_j} & \text{if } Y_{ij} = 1 \\ N(\gamma_j - (\tau_i) \frac{1}{a_j}) & \text{if } Y_{ij} = 0 \end{cases}
$$
:\nindividual speed change parameter > 0

\nmonotonic function that represents the influence from α_i

\ndifferent base speeds

\n
$$
\Box \log(L_{ij}) \sim \begin{cases} N(\gamma_j - (\tau_i) + \phi_i \times g(\alpha_i, \mathbf{q}_j)), \frac{1}{a_j} & \text{if } Y_{ij} = 1 \\ N(\gamma_j - (\tau_i) + \phi_i \times g(\alpha_i, \mathbf{q}_j)), \frac{1}{a_j} & \text{if } Y_{ij} = 1 \\ N(\gamma_j - (\tau_i) + \phi_i \times g(\alpha_i, \mathbf{q}_j)), \frac{1}{a_j} & \text{if } Y_{ij} = 0 \end{cases}
$$

Model Summary 9

- Likelihood function
	- − for the joint model using response time model 2:

$$
L(\Omega|Y, L) = \prod_{j=1}^{J} \prod_{i=1}^{N} f(Y_{ij}|\alpha_i, s_{1j}, s_{2j}, g_j) \left[f(L_{ij}|Y_{ij}, \alpha_i, \tau_i, \gamma_j, a_j, \phi_i) \middle| f(\tau_i|\sigma_\tau^2) \right] \longrightarrow \text{ mean: 0}
$$
\n
$$
P(Y_{ij} = 1|\alpha_i)^{Y_{ij}} (1 - P(Y_{ij} = 1|\alpha_i))^{1 - Y_{ij}} \qquad \text{ mean: } \gamma_j - (\tau_i + \phi_i \times g(\alpha_i, \mathbf{q}_j)) \qquad Y_{ij} = 1
$$
\n
$$
\gamma_j - \tau_i \qquad \qquad Y_{ij} = 0
$$
\n
$$
\text{variance: } \frac{1}{a_j}
$$

− for the joint model using response time model 3:

$$
L(\Omega|Y, L) = \prod_{j=1}^{J} \prod_{i=1}^{N} f(Y_{ij}|\alpha_i, s_{1j}, s_{2j}, g_j) \underbrace{f(L_{ij}|Y_{ij}, \alpha_i, \tau_{i0}, \tau_{i1}, \gamma_j, a_j, \phi_i)} \underbrace{f(\tau_{i0}, \tau_{i1} | \Sigma_{\tau_0 \tau_1})}{\prod_{\gamma_j - \tau_{i0}}^{N} (r_{ij} | \gamma_j - \tau_{i0})} \underbrace{f(\tau_{i0}, \tau_{i1} | \Sigma_{\tau_0 \tau_1})}{\prod_{\gamma_j - \tau_{i0}}^{N} (r_{ij} | \gamma_j - \tau_{i0})}
$$

• Following a principle of **conjugate priors**

− take the variance of speed for model 2 as an example

 $\tau_i \sim N(\mu_\tau, \sigma_\tau^2)$ (restrict $\mu_{\tau} = 0$ to fix the location of the latent continuous variables)

− the selection of conjugate prior is determintered by **the kernel of the likelihood function**:

$$
p(\tau|\sigma_{\tau}^{2}) = \left(\frac{1}{\sqrt{2\pi}\sigma_{\tau}}\right)^{N} \exp\left\{-\frac{1}{2\sigma_{\tau}^{2}}\sum_{i=1}^{N}(\tau_{i}-0)^{2}\right\} \propto \left(\frac{1}{\sigma_{\tau}^{2}}\right)^{N/2} \exp\left\{-\frac{1}{2\sigma_{\tau}^{2}}\sum_{i=1}^{N}(\tau_{i}-0)^{2}\right\}
$$

Inv – Gamma(x; a, b) = $\frac{b^{a}}{\Gamma(a)}\left(\frac{1}{x}\right)^{a+1} \exp\left(-\frac{1}{x}b\right)$

the prior: $\pi(\sigma_{\tau}^2) = Inv - Gamma(\sigma_{\tau}^2; a, b)$

$$
p(\sigma_{\tau}^{2}|\tau) \propto p(\tau|\sigma_{\tau}^{2})\pi(\sigma_{\tau}^{2}) \propto \left(\frac{1}{\sigma_{\tau}^{2}}\right)^{a+1+\frac{N}{2}} \exp\{-\frac{1}{\sigma_{\tau}^{2}}(b+\frac{1}{2}\sum_{i=1}^{N}\tau_{i}^{2})\} \quad \text{Inv} - \text{Gamma}\left(\sigma_{\tau}^{2}; a+\frac{N}{2}, b+\frac{1}{2}\sum_{i=1}^{N}\tau_{i}^{2}\right)
$$

$$
L(\Omega|Y, L) = \prod_{j=1}^{J} \prod_{i=1}^{N} f(Y_{ij} | \overbrace{\alpha_i, s_{1j}, s_{2j}, g_j} f(L_{ij} | Y_{ij}, \alpha_i, \tau_i, \gamma_j, a_j, \phi_i) f(\tau_i | \sigma_{\tau}^2)
$$

• The full conditional distributions

Response model (1)

$$
s_{j2}|s_{j1} \text{ Beta}(\tilde{\alpha}_{s2}, \tilde{\beta}_{s2})1_{\{s_{j1} > s_{j2}\}},
$$
\n
$$
\tilde{\alpha}_{s2} = \sum_{i:\eta_{ij}=2} (1 - Y_{ij}) + \alpha_{s2}, \text{ and } \tilde{\beta}_{s2} = \sum_{i:\eta_{ij}=2} Y_{ij} + \beta_{s2}
$$
\n
$$
s_{j1}|s_{j2}, g_j \text{Beta}(\tilde{\alpha}_{s1}, \tilde{\beta}_{s1})1_{\{s_{j2} < s_{j1} < 1 - g_j\}} \tilde{\alpha}_{s1} = \sum_{i:\eta_{ij}=1} (1 - Y_{ij}) + \alpha_{s1}, \text{ and } \tilde{\beta}_{s1} = \sum_{i:\eta_{ij}=1} Y_{ij} + \beta_{s1}
$$
\n
$$
g_j|s_{j1} \text{ Beta}(\tilde{\alpha}_g, \tilde{\beta}_g)1_{\{0 \leq g_j < 1 - s_{j1}\}} \tilde{\alpha}_g = \sum_{i:\eta_{ij}=0} Y_{ij} + \alpha_g, \text{ and } \tilde{\beta}_g = \sum_{i:\eta_{ij}=0} (1 - Y_{ij}) + \beta_g
$$
\n
$$
\alpha_i \text{Multinomial distribution with } 3^K \text{ categories and parameter } \tilde{\pi}_{ic}
$$
\n
$$
\tilde{\pi}_{ic} = \frac{P(Y_i|\alpha_i = \alpha_c, \Omega) f(L_i|\tau, \phi_i, \alpha_i = \alpha_c) \pi_c}{\sum_{c=1}^C P(Y_i|\alpha_i = \alpha_c, \Omega) f(L_i|\tau, \phi, \alpha_i = \alpha_c) \pi_c}
$$
\n
$$
\pi \text{Dirichlet}(\tilde{N} + \delta_0)
$$
\n
$$
\tilde{N} = (\tilde{N}_1, \dots, \tilde{N}_C), \text{ and } \tilde{N}_c = \sum_{i=1}^N 1_{(\alpha_i = \alpha_c)}
$$

$$
L(\Omega|Y, L) = \prod_{j=1}^{J} \prod_{i=1}^{N} f(Y_{ij}|\alpha_{i}, s_{1j}, s_{2j}, g_{j}) f(L_{ij}|Y_{ij}, \alpha_{i}(\overbrace{\tau_{i}, \gamma_{j}, a_{j}, \phi_{i}}) f(\tau_{i}(\overbrace{\sigma_{\tau}^{2}}))
$$

\n• The full conditional distributions
\n
$$
\log(L_{ij}) \sim \begin{cases} N(y_{j} - (\tau_{i} + \phi_{i} \times g(\alpha_{i}, q_{j})), \frac{1}{a_{j}}) & \text{if } Y_{ij} = 1, \\ N(y_{j} - \tau_{i}, \frac{1}{a_{j}}) & \text{if } Y_{ij} = 0, \end{cases} \tau_{i} \sim N(\mu_{\tau}, \sigma_{\tau}^{2})
$$

\n
$$
\alpha_{j}^{2}
$$

\n
$$
\text{Gamma}(\alpha_{1} + \frac{N}{2}, b_{1} + \frac{1}{2} \sum_{i=1}^{N} (log(L_{ij}) + \tau_{i} + \phi_{i} \cdot g(\alpha_{i}, \mathbf{q}_{j}) 1_{\{Y_{ij} = 1\}} - \gamma_{j})^{2}).
$$

\n
$$
\gamma_{j}
$$

\n
$$
N \left(\frac{a_{j}^{2} \cdot \sum_{i=1}^{N} (log(L_{ij}) + \tau_{i} + \phi_{i} \cdot g(\alpha_{i}, \mathbf{q}_{j}) 1_{\{Y_{ij} = 1\}})}{N a_{j}^{2} \rho_{\sigma_{\tau}^{2}} + 1}, \frac{P_{\sigma_{\tau}^{2}}}{N a_{j}^{2} \rho_{\sigma_{\tau}^{2}} + 1} \right)
$$

\n
$$
\tau_{i}
$$

\n
$$
N \left(-\frac{\sum_{j} (log L_{ij} - \gamma_{j} + \phi_{i} \cdot g(\alpha_{i}, \mathbf{q}_{j}) 1_{\{Y_{ij} = 1\}}) \cdot a_{j}^{2}}{\sum_{j} a_{j}^{2} + 1 / \sigma_{\tau}^{2}}, \frac{1}{(\sum_{j} (a_{j})^{2} + 1 / \sigma_{\tau}^{2})} \right)
$$

\n
$$
\sigma_{\tau}^{2}
$$

\n
$$
\text{Inv-Gamma}(\alpha_{2} + \frac{N}{2
$$

- a computer-based mental rotation learning program
	- − 351 participants' response times and responses to 10 items
	- − four attributes were measured:

 α ₁(90° x-axis), α ₂(90° y-axis), α ₃(180° x-axis) and α ₄(180° y-axis)

The Distribution of Log (Response Time) of Correct Response 17

- CDM fluency models:
	- − response accuracy: model 1
	- − response time model: model 2 or model 3
	- − covariate function $g(\boldsymbol{\alpha}_i, \mathbf{q}_j)$: η_{ij} or $1_{\{\eta_{ij}=2\}}$
- baseline models:
	- 1. DINA model for responses and lognormal model for response times
	- 2. Model 1 fitted to only responses
- evaluation criteria:
	- − model convergence: PSRF
	- − model comparison: the deviance information criteria (DIC)

The PSRF for the Most Complicated Model 19

Chain Length

DIC of six models

Note: Eq means Equation. RT denotes response times.

Estimated item parameters from fluency model 2

The order of the attributes in a q vector is $\alpha_1 = x90$, $\alpha_2 = y90$, $\alpha_3 = x180$ and $\alpha_4 = y180$.

FIGURE 4. Distribution of ϕ_i

Is the Proposed Fluency Model More Informative? 23

Summary information for three groups

Note: $\alpha_1 = x90, \alpha_2 = y90, \alpha_3 = x180$ and $\alpha_4 = y180$.

Is the Proposed Fluency Model More Informative? 24

FIGURE 5. Boxplot of total scores for three groups

FIGURE 6. Boxplot of response time on item 3

Simulations Based on Real Data Conditions 25

- How information from correct response times can improve the classification accuracy?
	- − the true model parameters: the estimated values from the real data application
	- − data generation: 351 students' responses to 10 questions 1. true model: model 1 + model 2 (covariate function as $1_{\{\eta_{ij}=2\}}$) 2. true model: model 1
	- − evaluation criteria: the attribute-wise agreement rate (AAR)

The Attribute-wise Classification Accuracy 26

FIGURE 7.

Comparison of attribute agreement rate for two models. The grey bar represents the AAR from the CDM fluency model 2; the white bar represents the AAR from the baseline model 2

- Simulation conditions:
	- − the sample size (N): 500, 1000
	- − the test length (J): 20, 40
	- $-$ the true distribution for ϕ_i : $N(1, 0.6)1_{\{\phi_i > 1\}} \longrightarrow$ 2.7s – 4.5s $N(0.6, 0.3)1_{\{\phi_i > 0.4\}} \rightarrow 1.5s - 2.0s$
	- − the item parameters for the response model (g, s₁, s₂): small measurement errors \rightarrow (0.1, 0.2, 0.1) moderate measurement errors \rightarrow (0.1, 0.5, 0.1)
	- − the data generation model

- Simulation conditions:
	- − the number of attributes: 4 (possible states 3^4)
	- − the response time model parameters:

a from N(3.5, 0.5)

γ from uniform (2,4)

− the speed parameter:

for models 1 & 2: $\tau_i \sim N(0, 0.5)$ for models 3 & 4: $(\tau_{0i}, \tau_{1i}) \sim MVN((0, 0), \Sigma_{\tau_0 \tau_1})$ $\Sigma_{\tau_0 \tau_1} = \begin{pmatrix} 0.305 & 0.122 \\ 0.122 & 0.15 \end{pmatrix}$

- Evaluation criteria:
	- − the MCMC chain convergence: the maximum PSRF
	- − the parameter recovery: AAR & PAR & correlation & deviation (median, proportion)

Model Convergence Results 29

FIGURE 9.
 \hat{R} plot of model 3

ϕ Cond.	Item Cond.	Model	\boldsymbol{J}	\boldsymbol{N}	τ_i cor	Median	Pr
			20	500	0.968(0.005)	0.171	0.598
			40	1000	0.982(0.004)	0.142	0.592
		$\overline{2}$	20	500	0.953(0.009)	0.174	0.562
			40	1000	0.982(0.005)	0.131	0.611
	$\overline{2}$		20	500	0.978(0.003)	0.157	0.573
			40	1000	0.989(0.003)	0.130	0.629
		$\overline{2}$	20	500	0.953(0.009)	0.176	0.550
			40	1000	0.983(0.004)	0.132	0.598
$\overline{2}$	1		20	500	0.974(0.005)	0.184	0.521
			40	1000	0.988(0.008)	0.141	0.627
		$\overline{2}$	20	500	0.970(0.003)	0.168	0.564
			40	1000	0.983(0.004)	0.133	0.641
	$\overline{2}$		20	500	0.980(0.005)	0.155	0.561
			40	1000	0.981(0.006)	0.121	0.630
		2	20	500	0.973(0.003)	0.166	0.540
			40	1000	0.984(0.004)	0.146	0.603

Results of τ_i estimation of model 1 and 2

Results of τ_{0i} and τ_{1i} estimation of model 3 and 4

	ϕ Cond. Item Cond. Model		\bm{J}	\boldsymbol{N}	τ_0 cor	Median	Pr	τ_1 cor	Median	Pr
		3	20	500	0.975(0.003)	0.253	0.424	0.622(0.014)	1.481	0.177
			40	1000	0.987(0.001)	0.205	0.494	0.688(0.009)	1.709	0.230
		4	20	500	0.975(0.004)	0.191	0.516	0.868(0.010)	1.586	0.284
			40	1000	0.988(0.001)	0.136	0.618	$ 0.927\rangle (0.006)$	1.449	0.370
	$\overline{2}$	3	20	500	0.984(0.003)	0.251	0.420	0.582(0.013)	1.230	0.154
			40	1000	0.991(0.001)	0.231	0.459	0.638(0.011)	1.247	0.203
		4	20	500	0.985(0.001)	0.175	0.543	0.871(0.013)	1.797	0.264
			40	1000	0.992(0.001)	0.126	0.644	0.928(0.012)	1.496	0.347
$\overline{2}$		3	20	500	0.975(0.003)	0.248	0.429	0.779(0.008)	1.277	0.177
			40	1000	0.988(0.001)	0.167	0.558	0.862(0.009)	1.315	0.246
		4	20	500	0.975(0.004)	0.203	0.497	0.888(0.007)	1.375	0.276
			40	1000	0.988(0.001)	0.142	0.607	0.925(0.006)	1.342	0.358
	$\overline{2}$	3	20	500	0.984(0.002)	0.256	0.416	0.737(0.008)	1.250	0.142
			40	1000	0.991(0.001)	0.157	0.582	0.853(0.011)	1.253	0.226
		4	20	500	0.984(0.002)	0.185	0.524	0.894(0.010)	1.430	0.266
			40	1000	0.991(0.001)	0.131	0.639	$ 0.934\rangle (0.008)$	1.349	0.350

FIGURE 10. Response model item parameter estimation for $N = 500$, $J = 20$ and ϕ condition 1. The true values are denoted by dash lines

FIGURE 11. Response model item parameter estimation for $N = 500$, $J = 20$ and ϕ condition 2. The true values are denoted by dash lines

Discussion 36

- this study offers a new view to measure skill accuracy and fluency
	- − enable teachers to instruct students to work on reinforcing the accurate albeit not yet fluent skills
- the proposed joint models were able to reveal more information regarding test takers' spatial skills
- further improvement:
	- − considering response heterogeneity (mixture model or nonlinear assumptions)
	- − investigating the issue of local dependencies between response accuracy and time within items
	- − relaxing some restrict assumptions

THANKS FOR LISTENING!

REPORTER

YINGSHI HUANG