PSYCHOMETRIKA—VOL. 85, NO. 3, 600–629 SEPTEMBER 2020 https://doi.org/10.1007/s11336-020-09717-2

USING RESPONSE TIMES AND RESPONSE ACCURACY TO MEASURE FLUENCY WITHIN COGNITIVE DIAGNOSIS MODELS

SHIYU WANG UNIVERSITY OF GEORGIA

YINGHAN CHEN UNIVERSITY OF NEVADA, RENO

Reporter: Yingshi Huang

Introduction

- Cognitive diagnosis model (CDM)
 - Identifying a profile of strengths and weakness on assessed skills
 - Mastery: skills that are completed with accuracy

Mastery = accuracy in a skill + complete the task with fluency

The 2PLM ??? $P_{j}(\theta_{i}) = \frac{\exp(Da_{j}(\theta_{i} - b_{j}))}{1 + \exp(Da_{i}(\theta_{i} - b_{j}))}$ 0

The GRM & NRM ??? $P_{ix}^{*}(\theta) = \frac{\exp[Dai(\theta - bix)]}{1 + \exp[Dai(\theta - bix)]}$ $P_{ix}(\theta) = P_{ix}^{*}(\theta) - P_{i,x+1}^{*}(\theta)$ $P_{ix}(\theta) = \frac{\exp(c_{ix} + a_{ix}\theta)}{\sum_{i}^{n_i} \exp(c_{ih} + a_{ih}\theta)}$

Introduction

- Cognitive diagnosis model (CDM)
 - Identifying a profile of strengths and weakness on assessed skills
 - Mastery: skills that are completed with accuracy

Mastery = accuracy in a skill + complete the task with fluency

- What is fluency?
 - Speed: spontaneous speed & imposed speed

+ accuracy

- The aim of this study:
 - further advance the current CDM to measure fluency directly

[De Boeck et al. 2017 BJMSP]

- Response accuracy
 - latent trait models
 - CDM: categorical trait, 1 indicating accuracy in the skill and 0 indicating otherwise
- Response time
 - pure response time models $T_{pi} \leftarrow$
 - joint models for response times and other variables $[T_{pi}, A_{pi}] \leftarrow$
 - local dependency models $([T_{pi} \leftrightarrow A_{pi}]) \leftarrow$
 - response time as covariate $A_{pi} \leftarrow T_{pi}$

Introduction

5

- CDM & response time
 - Zhan et al. (2018) & Wang et al. (2020, 2018b, 2019)

utilizing response times as ancillary information to improve the measurement accuracy

CDM for Fluency

- How to directly measure the fluency?
 - 1. a specific relationship between accuracy and speed
 - \rightarrow speed tends to improve as accuracy reaches some level of proficiency
 - 2. an automatic process
 - \rightarrow a fast, correct response represents a higher skill level
 - 3. defining fluency as the highest level of a polytomous CDM
 - \rightarrow three attribute levels:
 - $\alpha_{ik} = 0$: low accuracy
 - $\alpha_{ik} = 1$: high response accuracy but slow speed on correct answers
 - $\alpha_{ik} = 2$: high response accuracy and fast speed on correct answers

- Response accuracy
 - -J test questions to measure K latent skills
 - N test takers
 - response time: L_{ij}
 - response accuracy: Y_{ij}
 - Q matrix for item j: $\mathbf{q}_j = (q_{j1}, \ldots, q_{jK})^T$
 - latent attribute for examinee $i : \boldsymbol{\alpha}_i = (\alpha_{i1}, \ldots, \alpha_{iK})^T$

a conjunctive model: $\eta_{ij} := \eta_{ij}(\alpha_i, \mathbf{q}_j) = 1_{\{\forall k, q_{jk=1}, \alpha_{ik} = q_{jk}\}} + 1_{\{\forall k, q_{jk} = 1, \alpha_{ik} > q_{jk}\}}$

$$P(Y_{ij} = 1 | \boldsymbol{\alpha}_i) = \begin{cases} g_j, & \text{if } \eta_{ij} = 0\\ 1 - s_{1j}, & \text{if } \eta_{ij} = 1\\ 1 - s_{2j}, & \text{if } \eta_{ij} = 2 \end{cases} \text{ with } 0 < g_j < 1 - s_{1j} < 1 - s_{2j} < 1 \tag{1}$$

• Response time

- a conditional model:

- \rightarrow consider response times on correct responses only
- \rightarrow avoid the confounding influence from the fast but inaccurate responses

$$\Box \log(L_{ij}) \sim \begin{cases} N(\gamma_j - (\tau_i) + \phi_i \times g(\alpha_i, \mathbf{q}_j)), \frac{1}{a_j}) & \text{if } Y_{ij} = 1\\ N(\gamma_j - (\tau_i) \frac{1}{a_j}) & \text{if } Y_{ij} = 0 \end{cases}, \quad \tau_i \sim N(\mu_\tau, \sigma_\tau^2) \quad (2)$$

individual speed change parameter > 0 monotonic function that represents the influence from α_i
 $g(\alpha_i, \mathbf{q}_j) = \begin{cases} \alpha_i^T \mathbf{q}_j = \sum_{k=1}^K a_{ik}q_{jk}, \\ \eta_{ij}, \\ 1_{\{\eta_{ij}=2\}}. \end{cases}$
different base speeds
 $\Box \log(L_{ij}) \sim \begin{cases} N(\gamma_j - (\tau_{ij}) + \phi_i \times g(\alpha_i, \mathbf{q}_j)), \frac{1}{a_j}) & \text{if } Y_{ij} = 1\\ N(\gamma_j - (\tau_{ij}), \frac{1}{a_j}) & \text{if } Y_{ij} = 0 \end{cases}, \quad (\tau_{0i}, \tau_{1i}) \sim N(\mu, \Sigma_{\tau_0\tau_1}) \quad (3)$

Model Summary

- Likelihood function
 - for the joint model using response time model 2:

$$L(\Omega|Y,L) = \prod_{j=1}^{J} \prod_{i=1}^{N} \underbrace{f(Y_{ij}|\boldsymbol{\alpha}_{i}, s_{1j}, s_{2j}, g_{j})}_{j} \underbrace{f(L_{ij}|Y_{ij}, \boldsymbol{\alpha}_{i}, \tau_{i}, \gamma_{j}, a_{j}, \phi_{i})}_{q} \underbrace{f(\tau_{i}|\sigma_{\tau}^{2})}_{q} \longrightarrow \begin{array}{c} \text{mean: } 0 \\ \text{variance: } \sigma_{\tau}^{2} \\ P(Y_{ij} = 1|\boldsymbol{\alpha}_{i})^{Y_{ij}} (1 - P(Y_{ij} = 1|\boldsymbol{\alpha}_{i}))^{1-Y_{ij}} \\ \gamma_{j} - \tau_{i} \\ \gamma_{j} - \tau_{i} \\ \gamma_{ij} = 0 \\ \text{variance: } \frac{1}{a_{j}} \end{array}$$

- for the joint model using response time model 3:

$$L(\Omega|Y,L) = \prod_{j=1}^{J} \prod_{i=1}^{N} f(Y_{ij}|\boldsymbol{\alpha}_{i}, s_{1j}, s_{2j}, g_{j}) \underbrace{f(L_{ij}|Y_{ij}, \boldsymbol{\alpha}_{i}, \tau_{i0}, \tau_{i1}, \gamma_{j}, a_{j}, \phi_{i})}_{\mathsf{mean:} \gamma_{j} - (\tau_{i1} + \phi_{i} \times g(\boldsymbol{\alpha}_{i}, \mathbf{q}_{j})) \quad Y_{ij} = 1 \qquad (0,0)^{T}}_{\gamma_{j} - \tau_{i0}} \qquad Y_{ij} = 0 \qquad \Sigma_{\tau_{0}\tau_{1}}$$

• Following a principle of **conjugate priors**

- take the variance of speed for model 2 as an example

 $\tau_i \sim N(\mu_{\tau}, \sigma_{\tau}^2)$ (restrict $\mu_{\tau} = 0$ to fix the location of the latent continuous variables)

- the selection of conjugate prior is determintered by the kernel of the likelihood function:

$$p(\tau | \sigma_{\tau}^{2}) = \left(\frac{1}{\sqrt{2\pi}\sigma_{\tau}}\right)^{N} \exp\left\{-\frac{1}{2\sigma_{\tau}^{2}}\sum_{i=1}^{N}(\tau_{i}-0)^{2}\right\} \propto \left(\frac{1}{\sigma_{\tau}^{2}}\right)^{N/2} \exp\{-\frac{1}{2\sigma_{\tau}^{2}}\sum_{i=1}^{N}(\tau_{i}-0)^{2}\}$$

$$Inv - Gamma(x; a, b) = \frac{b^{a}}{\Gamma(a)}\left(\frac{1}{x}\right)^{a+1} \exp(-\frac{1}{x}b)$$
the prior: $\pi(\sigma_{\tau}^{2}) = Inv - Gamma(\sigma_{\tau}^{2}; a, b)$

$$p(\sigma_{\tau}^{2} | \tau) \propto p(\tau | \sigma_{\tau}^{2})\pi(\sigma_{\tau}^{2}) \propto \left(\frac{1}{\sigma_{\tau}^{2}}\right)^{a+1+\frac{N}{2}} \exp\{-\frac{1}{\sigma_{\tau}^{2}}(b+\frac{1}{2}\sum_{i=1}^{N}\tau_{i}^{2})\} \quad \text{Inv} - Gamma\left(\sigma_{\tau}^{2}; a+\frac{N}{2}, b+\frac{1}{2}\sum_{i=1}^{N}\tau_{i}^{2}\right)$$

$$L(\Omega|Y,L) = \prod_{j=1}^{J} \prod_{i=1}^{N} f(Y_{ij}|\boldsymbol{\alpha}_{i}, s_{1j}, s_{2j}, g_{j}) f(L_{ij}|Y_{ij}, \boldsymbol{\alpha}_{i}, \tau_{i}, \gamma_{j}, a_{j}, \phi_{i}) f(\tau_{i}|\sigma_{\tau}^{2})$$

• The full conditional distributions

Response model (1)

$$s_{j2}|s_{j1} \quad \text{Beta}(\tilde{\alpha}_{s2}, \tilde{\beta}_{s2})1_{\{s_{j1} > s_{j2}\}}, \\ \tilde{\alpha}_{s2} = \sum_{i:\eta_{ij}=2}(1 - Y_{ij}) + \alpha_{s2}, \text{ and } \tilde{\beta}_{s2} = \sum_{i:\eta_{ij}=2}Y_{ij} + \beta_{s2} \\ s_{j1}|s_{j2}, g_{j}\text{Beta}(\tilde{\alpha}_{s1}, \tilde{\beta}_{s1})1_{\{s_{j2} < s_{j1} < 1 - g_{j}\}} \\ \tilde{\alpha}_{s1} = \sum_{i:\eta_{ij}=1}(1 - Y_{ij}) + \alpha_{s1}, \text{ and } \tilde{\beta}_{s1} = \sum_{i:\eta_{ij}=1}Y_{ij} + \beta_{s1} \\ g_{j}|s_{j1} \quad \text{Beta}(\tilde{\alpha}_{g}, \tilde{\beta}_{g})1_{\{0 \le g_{j} < 1 - s_{j1}\}} \\ \tilde{\alpha}_{g} = \sum_{i:\eta_{ij}=0}Y_{ij} + \alpha_{g}, \text{ and } \tilde{\beta}_{g} = \sum_{i:\eta_{ij}=0}(1 - Y_{ij}) + \beta_{g} \\ \alpha_{i} \qquad \text{Multinominal distribution with } 3^{K} \text{ categories and parameter } \tilde{\pi}_{ic} \\ \tilde{\pi}_{ic} = \frac{P(Y_{i}|\alpha_{i}=\alpha_{c},\Omega)f(L_{i}|\tau,\phi_{i},\alpha_{i}=\alpha_{c})\pi_{c}}{\sum_{c=1}^{C} P(Y_{i}|\alpha_{i}=\alpha_{c},\Omega)f(L_{i}|\tau,\phi,\alpha_{i}=\alpha_{c})\pi_{c}} \\ \pi \qquad \text{Dirichlet}(\tilde{\mathbf{N}} + \boldsymbol{\delta}_{0}) \\ \tilde{\mathbf{N}} = (\tilde{N}_{1}, \dots, \tilde{N}_{C}), \text{ and } \tilde{N}_{c} = \sum_{i=1}^{N} 1_{(\alpha_{i}=\alpha_{c})}$$

•

$$\begin{split} L(\Omega|Y,L) &= \prod_{j=1}^{J} \prod_{i=1}^{N} f(Y_{ij}|\alpha_{i}, s_{1j}, s_{2j}, g_{j}) f(L_{ij}|Y_{ij}, \alpha_{i} \underbrace{\tau_{i}, \gamma_{j}, a_{j}, \phi_{i}}) f(\tau_{i} (\sigma_{\tau}^{2}) \\ \text{The full conditional distributions} \\ \log(L_{ij}) \sim \begin{bmatrix} N(\gamma_{j} - (\tau_{i} + \phi_{i} \times g(\alpha_{i}, q_{j})), \frac{1}{a_{j}}) & \text{if } Y_{ij} = 1 \\ N(\gamma_{j} - \tau_{i}, \frac{1}{a_{j}}) & \text{if } Y_{ij} = 0 \\ N(\gamma_{j} - \tau_{i}, \frac{1}{a_{j}}) & \text{if } Y_{ij} = 0 \\ \end{bmatrix} \\ a_{j}^{2} \\ Gamma\left(a_{1} + \frac{N}{2}, b_{1} + \frac{1}{2} \sum_{i=1}^{N} (log(L_{ij}) + \tau_{i} + \phi_{i} \cdot g(\alpha_{i}, q_{j}))_{\{Y_{ij}=1\}} - \gamma_{j})^{2}\right). \\ \gamma_{j} \\ N\left(\frac{a_{j}^{2} \sum_{i=1}^{N} (log(L_{ij}) + \tau_{i} + \phi_{i} \cdot g(\alpha_{i}, q_{j}))_{\{Y_{ij}=1\}})}{Na_{j}^{2}p_{\sigma_{\tau}^{2}} + 1}, \frac{P_{\sigma_{\tau}^{2}}}{Na_{j}^{2}p_{\sigma_{\tau}^{2}} + 1}\right) \\ \tau_{i} \\ N\left(\frac{-\sum_{j} ((\log L_{ij} - \gamma_{j} + \phi_{i} \cdot g(\alpha_{i}, q_{j}))_{\{Y_{ij}=1\}}) \cdot a_{j}^{2}}{\sum_{j} a_{j}^{2} + 1/\sigma_{\tau}^{2}}, 1/(\sum_{j} (a_{j})^{2} + 1/\sigma_{\tau}^{2})\right) \\ \sigma_{\tau}^{2} \\ \text{Inv-Gamma}(a_{2} + \frac{N}{2}, b_{2} + \frac{\sum_{i=1}^{N} \tau_{i}^{2}}{2}) \\ \phi_{i} \\ N\left(-\frac{\sum_{j:Y_{ij}=1} [a_{j}^{2}g^{2}(\alpha_{i}, q_{j})(\log(L_{ij}) - \gamma_{j} + \tau_{i})]}{\sum_{j:Y_{ij}=1} [a_{j}^{2}g^{2}(\alpha_{i}, q_{j})] + 1/\sigma_{\phi}^{2}}, \{\sum_{j=1}^{J} \sum_{i:Y_{ij}=1} [a_{j}^{2}g^{2}(\alpha_{i}, q_{j})] + 1/\sigma_{\phi}^{2}]^{-1}\right) \end{aligned}$$

•

$$\begin{split} L(\Omega|Y,L) &= \prod_{j=1}^{J} \prod_{i=1}^{N} f(Y_{ij} | \boldsymbol{\alpha}_{i}, s_{1j}, s_{2j}, g_{j}) f(L_{ij} | Y_{ij}, \boldsymbol{\alpha}_{i}, \overbrace{\tau_{i0}, \tau_{i1}, \gamma_{j}, a_{j}, \phi_{i}}) f(\tau_{i0}, \tau_{i1} | \overbrace{\Sigma_{\tau_{0}\tau}}) \\ \text{The full conditional distributions} \\ \log(L_{ij}) \sim \begin{cases} N(y_{j} - (\tau_{i1} + \phi_{i} \times g(\boldsymbol{\alpha}_{i}, \mathbf{q}_{j})), \frac{1}{a_{j}}) & \text{if } Y_{ij} = 1 \\ N(y_{j} - \tau_{i0}, \frac{1}{a_{j}}) & \text{if } Y_{ij} = 0 \end{cases} \\ \text{Kesponse time model (3)} \\ a_{j}^{2} & \text{Gamma} \left(a_{1} + \frac{N}{2}, b_{1} + \frac{1}{2} \sum_{i=1}^{N} (log(L_{ij}) + (\tau_{1i} + \phi_{i} \cdot g(\boldsymbol{\alpha}_{i}, \mathbf{q}_{j}))) 1_{\{Y_{ij}=1\}} + \overbrace{\tau_{0i} \cdot 1_{\{Y_{ij}=0\}} - \gamma_{j})^{2} \right) \\ \gamma_{j} & N \left(\frac{a_{j}^{2} (\sum_{i=1}^{N} (log(L_{ij})) + \sum_{i:Y_{ij}=1} (\phi_{i:g}(\boldsymbol{\alpha}_{i}, \mathbf{q}_{j}) + \tau_{1i}(+ \sum_{i:Y_{ij}=0} \tau_{0i}))}{p_{\sigma_{v}^{2}} N a_{j}^{2} + 1}, \frac{P_{\sigma_{v}^{2}}}{N a_{j}^{2} p_{\sigma_{v}^{2}} + 1} \right) \\ \tau_{0i} & N \left(\frac{-\sum_{j:Y_{ij}=0} (\log L_{ij} - \gamma_{j})(a_{j})^{2}}{\sum_{j:Y_{ij}=1} a_{j}^{2} + 1/\sigma_{\tau_{0}}^{2}}}, \frac{1/(\sum_{j:Y_{ij}=0} a_{j}^{2} + 1/\sigma_{\tau_{0}}^{2}})}{p_{\sigma_{v}^{2}} N a_{j}^{2} + 1/\sigma_{\tau_{0}}^{2}}} \right) \\ \phi_{i} & N \left(-\frac{\sum_{j:Y_{ij}=1} [a_{j}^{2}g(\boldsymbol{\alpha}_{i}, \mathbf{q}_{j})](a_{j}(L_{ij}) - \gamma_{j} + \tau_{1i})]}}{\sum_{j:Y_{ij}=1} [a_{j}^{2}g^{2}(\boldsymbol{\alpha}_{i}, \mathbf{q}_{j})](a_{j}(L_{ij}) - \gamma_{j} + \tau_{1i})}}, \left\{ \sum_{j:Y_{ij}=1} a_{j}^{2} + 1/\sigma_{\tau_{0}}^{2}} \right) \right\} \\ \end{array} \right)$$

- a computer-based mental rotation learning program
 - 351 participants' response times and responses to 10 items
 - four attributes were measured:

 $\alpha_1(90^\circ \text{ x-axis}), \alpha_2(90^\circ \text{ y-axis}), \alpha_3(180^\circ \text{ x-axis}) \text{ and } \alpha_4(180^\circ \text{ y-axis})$

The Distribution of Log (Response Time) of Correct Response 17

- CDM fluency models:
 - response accuracy: model 1
 - response time model: model 2 or model 3
 - covariate function $g(\boldsymbol{\alpha}_i, \mathbf{q}_j)$: η_{ij} or $1_{\{\eta_{ij}=2\}}$
- baseline models:
 - 1. DINA model for responses and lognormal model for response times
 - 2. Model 1 fitted to only responses
- evaluation criteria:
 - model convergence: PSRF
 - model comparison: the deviance information criteria (DIC)

The PSRF for the Most Complicated Model

19

	Ν	Iodel	DIC				
Fluency	Response	RT	$g(\pmb{\alpha}_i, \pmb{\mathbf{q}}_j)$	Response	RT	Joint	
1	Eq. (1)	Eq. (2)	η_{ii}	2952.00	30,159.12	33,111.12	
2	Eq. (1)	Eq. (2)	$1_{\{n_{i,i}=2\}}$	2756.24	29,981.68	32,737.92	
3	Eq. (1)	Eq. (3)	η_{ii}	2968.41	30,197.25	33,165.67	
4	Eq. (1)	Eq. (3)	$1_{\{\eta_{ij}=2\}}$	2815.62	30,010.56	32,826.18	
			Baseline				
1	DINA	Lognormal	_	3019.20	30,012.51	33,031.71	
2	Eq. (1)	_	—	2760.91	—	_	

DIC of six models

Note: Eq means Equation. RT denotes response times.

Item	q Vector	F	Response mode	Respo	Response time		
	$(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$	8	<i>s</i> ₁	<i>s</i> ₂	а	γ	
Item1	(1000)	0.802	0.029	0.010	1.661	3.193	
Item2	(0100)	0.771	0.039	0.013	1.803	3.042	
Item3	(0001)	0.488	0.160	0.041	1.861	3.559	
Item4	(0010)	0.586	0.023	0.010	1.955	3.357	
Item5	(1100)	0.503	0.071	0.030	1.642	3.539	
Item6	(0110)	0.209	0.453	0.264	1.523	3.788	
Item7	(1100)	0.660	0.048	0.021	1.626	3.366	
Item8	(1001)	0.396	0.103	0.050	1.555	3.610	
Item9	(0010)	0.827	0.010	0.004	2.116	2.789	
Item10	(0110)	0.583	0.082	0.041	1.464	3.445	

Estimated item parameters from fluency model 2

The order of the attributes in a q vector is $\alpha_1 = x90$, $\alpha_2 = y90$, $\alpha_3 = x180$ and $\alpha_4 = y180$.

FIGURE 4. Distribution of ϕ_i

Is the Proposed Fluency Model More Informative?

Summary information for three groups

23

Group		Mean attribute level							
	α_1	α2	α3	α_4					
Group1	1.012	1.383	1.086	1.753	81				
Group2	1.000	1.000	1.000	1.000	122				
Group3	0.722	0.583	0.806	0.722	36				

Note: $\alpha_1 = x90$, $\alpha_2 = y90$, $\alpha_3 = x180$ and $\alpha_4 = y180$.

FIGURE 5. Boxplot of total scores for three groups

FIGURE 6. Boxplot of response time on item 3

Simulations Based on Real Data Conditions

- How information from correct response times can improve the classification accuracy?
 - the true model parameters: the estimated values from the real data application
 - data generation: 351 students' responses to 10 questions
 1. true model: model 1 + model 2 (covariate function as 1_{{ηij}=2})
 2. true model: model 1
 - evaluation criteria: the attribute-wise agreement rate (AAR)

The Attribute-wise Classification Accuracy

FIGURE 7.

Comparison of attribute agreement rate for two models. The grey bar represents the AAR from the CDM fluency model 2; the white bar represents the AAR from the baseline model 2

- Simulation conditions:
 - the sample size (N): 500, 1000
 - the test length (J): 20, 40
 - the true distribution for ϕ_i : $N(1, 0.6)1_{\{\phi_i > 1\}} \rightarrow 2.7s - 4.5s$ $N(0.6, 0.3)1_{\{\phi_i > 0.4\}} \rightarrow 1.5s - 2.0s$
 - the item parameters for the response model (g, s_1 , s_2): small measurement errors \rightarrow (0.1, 0.2, 0.1) moderate measurement errors \rightarrow (0.1, 0.5, 0.1)
 - the data generation model

Fluency	Response	RT	$g(\pmb{\alpha}_i, \pmb{\mathbf{q}}_j)$
1	Eq. (1)	Eq. (2)	η_{ij}
2	Eq. (1)	Eq. (2)	$1_{\{\eta_{i}\}=2\}}$
3	Eq. (1)	Eq. (3)	η_{ii}
4	Eq. (1)	Eq. (3)	$1_{\{\eta_{i}\}=2\}}$
5	Eq. (1)	_	

- Simulation conditions:
 - the number of attributes: 4 (possible states 3^4)
 - the response time model parameters:

a from N(3.5, 0.5)

 γ from uniform (2,4)

- the speed parameter:

for models 1 & 2: $\tau_i \sim N(0, 0.5)$ for models 3 & 4: $(\tau_{0i}, \tau_{1i}) \sim \text{MVN}((0, 0), \Sigma_{\tau_0\tau_1})$ $\Sigma_{\tau_0\tau_1} = \begin{pmatrix} 0.305 \ 0.122 \\ 0.122 \ 0.15 \end{pmatrix}$

- Evaluation criteria:
 - the MCMC chain convergence: the maximum PSRF
 - the parameter recovery: AAR & PAR & correlation & deviation (median, proportion)

Model Convergence Results

FIGURE 9. \hat{R} plot of model 3

	N(1, 0)	$(0.6)1_{\{\phi_i\}}$	>1}		Classification results of ϕ generation condition 1							
	Cond.	Model	J	N	PAR	AAR1	AAR2	AAR3	AAR4	ϕ cor	Median	Pr
	1	1	20	500	0.858 (0.008)	0.912	0.919	0.927	0.928	0.619 (0.025)	0.059	0.816
			40	1000	0.894 (0.011)	0.947	0.950	0.941	0.946	0.689 (0.023)	0.045	0.857
		2	20	500	0.829 (0.013)	0.948	0.945	0.925	0.944	0.715 (0.034)	0.077	0.880
(<i>g</i> ,	(s_1, s_2)		40	1000	0.896 (0.012)	0.964	0.969	0.956	0.965	0.775 (0.035)	0.067	0.908
(0.1,	0.2, 0.1) 3	20	500	0.839 (0.012)	0.944	0.944	0.921	0.949	0.645 (0.016)	0.093	0.742
			40	1000	0.883 (0.010)	0.943	0.950	0.941	0.946	0.829 (0.009)	0.096	0.807
		4	20	500	0.780 (0.012)	0.924	0.933	0.913	0.933	0.641 (0.031)	0.080	0.762
			40	1000	0.844 (0.011)	0.949	0.952	0.940	0.946	0.865 (0.021)	0.083	0.862
	2	1	20	500	0.845 (0.008)	0.931	0.938	0.910	0.943	0.694 (0.024)	0.052	0.856
			40	1000	0.925 (0.007)	0.967	0.970	0.961	0.965	0.755 (0.021)	0.040	0.911
		2	20	500	0.589 (0.014)	0.875	0.878	0.817	0.880	0.682 (0.036)	0.078	0.887
(g, s	$(1, s_2)$		40	1000	0.790 (0.013)	0.937	0.945	0.917	0.931	0.746 (0.041)	0.067	0.900
(0.1, 0	(0.5, 0.1)	3	20	500	0.815 (0.012)	0.895	0.924	0.911	0.922	0.627 (0.018)	0.092	0.777
	, ,		40	1000	0.815 (0.015)	0.900	0.911	0.901	0.907	0.819 (0.015)	0.102	0.781
		4	20	500	0.610 (0.014)	0.885	0.883	0.848	0.890	0.660 (0.035)	0.085	0.783
			40	1000	0.781 (0.013)	0.942	0.946	0.917	0.933	0.861 (0.032)	0.087	0.848

					$N(1, 0.6)1_{\{\phi_i > 1\}}$			<i>N</i> (0.6, 0.3	$)1_{\{\phi_i>0.4\}}$	}
Cor	nd.	Model	J	N	ϕ cor	Median	Pr	ϕ cor	Median	Pr
1		1	20	500	0.619 (0.025)	0.059	0.816	0.667 (0.023)	0.154	0.614
			40	1000	0.689 (0.023)	0.045	0.857	0.680 (0.015)	0.120	0.650
		2	20	500	0.715 (0.034)	0.077	0.880	0.721 (0.033)	0.158	0.567
(g, s_1, x_1)	s ₂)		40	1000	0.775 (0.035)	0.067	0.908	0.767 (0.048)	0.146	0.667
(0.1, 0.2,	0.1)	3	20	500	0.645 (0.016)	0.093	0.742	0.649 (0.027)	0.184	0.530
			40	1000	0.829 (0.009)	0.096	0.807	0.755 (0.015)	0.143	0.634
		4	20	500	0.641 (0.031)	0.080	0.762	0.668 (0.045)	0.202	0.494
			40	1000	0.865 (0.021)	0.083	0.862	0.745 (0.035)	0.170	0.570
2		1	20	500	0.694 (0.024)	0.052	0.856	0.745 (0.024)	0.127	0.642
			40	1000	0.755 (0.021)	0.040	0.911	0.695 (0.020)	0.105	0.629
		2	20	500	0.682 (0.036)	0.078	0.887	0.715 (0.052)	0.159	0.541
(g, s_1, s_1)	2)		40	1000	0.746 (0.041)	0.067	0.900	0.765 (0.050)	0.147	0.663
(0.1, 0.5, 0.5)	0.1)	3	20	500	0.627 (0.018)	0.092	0.777	0.664 (0.028)	0.187	0.530
	<i>,</i>		40	1000	0.819 (0.015)	0.102	0.781	0.716 (0.016)	0.153	0.597
		4	20	500	0.660 (0.035)	0.085	0.783	0.645 (0.051)	0.206	0.488
			40	1000	0.861 (0.032)	0.087	0.848	0.741 (0.038)	0.170	0.568

ϕ Cond.	Item Cond.	Model	J	Ν	$ au_i$ cor	Median	Pr
1	1	1	20	500	0.968 (0.005)	0.171	0.598
			40	1000	0.982 (0.004)	0.142	0.592
		2	20	500	0.953 (0.009)	0.174	0.562
			40	1000	0.982 (0.005)	0.131	0.611
	2	1	20	500	0.978 (0.003)	0.157	0.573
			40	1000	0.989 (0.003)	0.130	0.629
		2	20	500	0.953 (0.009)	0.176	0.550
			40	1000	0.983 (0.004)	0.132	0.598
2	1	1	20	500	0.974 (0.005)	0.184	0.521
			40	1000	0.988 (0.008)	0.141	0.627
		2	20	500	0.970 (0.003)	0.168	0.564
			40	1000	0.983 (0.004)	0.133	0.641
	2	1	20	500	0.980 (0.005)	0.155	0.561
			40	1000	0.981 (0.006)	0.121	0.630
		2	20	500	0.973 (0.003)	0.166	0.540
			40	1000	0.984 (0.004)	0.146	0.603

Results of τ_i estimation of model 1 and 2

Results of τ_{0i} and τ_{1i} estimation of model 3 and 4

ϕ Cond.	Item Cond.	Model	J	N	$\tau_0 \operatorname{cor}$	Median	Pr	$\tau_1 \operatorname{cor}$	Median	Pr
1	1	3	20	500	0.975 (0.003)	0.253	0.424	0.622 (0.014)	1.481	0.177
			40	1000	0.987 (0.001)	0.205	0.494	0.688 (0.009)	1.709	0.230
		4	20	500	0.975 (0.004)	0.191	0.516	0.868 (0.010)	1.586	0.284
			40	1000	0.988 (0.001)	0.136	0.618	0.927 (0.006)	1.449	0.370
	2	3	20	500	0.984 (0.003)	0.251	0.420	0.582 (0.013)	1.230	0.154
			40	1000	0.991 (0.001)	0.231	0.459	0.638 (0.011)	1.247	0.203
		4	20	500	0.985 (0.001)	0.175	0.543	0.871 (0.013)	1.797	0.264
			40	1000	0.992 (0.001)	0.126	0.644	0.928 (0.012)	1.496	0.347
2	1	3	20	500	0.975 (0.003)	0.248	0.429	0.779 (0.008)	1.277	0.177
			40	1000	0.988 (0.001)	0.167	0.558	0.862 (0.009)	1.315	0.246
		4	20	500	0.975 (0.004)	0.203	0.497	0.888 (0.007)	1.375	0.276
			40	1000	0.988 (0.001)	0.142	0.607	0.925 (0.006)	1.342	0.358
	2	3	20	500	0.984 (0.002)	0.256	0.416	0.737 (0.008)	1.250	0.142
			40	1000	0.991 (0.001)	0.157	0.582	0.853 (0.011)	1.253	0.226
		4	20	500	0.984 (0.002)	0.185	0.524	0.894 (0.010)	1.430	0.266
			40	1000	0.991 (0.001)	0.131	0.639	0.934 (0.008)	1.349	0.350

FIGURE 10. Response model item parameter estimation for N = 500, J = 20 and ϕ condition 1. The true values are denoted by dash lines

Parameter H

FIGURE 11. Response model item parameter estimation for N = 500, J = 20 and ϕ condition 2. The true values are denoted by dash lines

Discussion

- this study offers a new view to measure skill accuracy and fluency
 - enable teachers to instruct students to work on reinforcing the accurate albeit not yet fluent skills
- the proposed joint models were able to reveal more information regarding test takers' spatial skills
- further improvement:
 - considering response heterogeneity (mixture model or nonlinear assumptions)
 - investigating the issue of local dependencies between response accuracy and time within items
 - relaxing some restrict assumptions

THANKS FOR LISTENING!

REPORTER

YINGSHI HUANG