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Introduction

* [tem response theory (IRT)

— respondent j & item i
logit(P(Y;; =1 |aj, Bi)) = aj + Bi

1. conditional independence
2. consistency of success probability

unobserved interaction / dependence

* Purpose:

— introduce a novel latent space model

represent interactions of respondents and items



_atent Space Model

* How to interpret dependence?

ltems answered by examinee j



_atent Space Model

* How to interpret dependence?

P

Po
P2
Ps P1 e

P10
Ps
P3

Ps P11

Responses of different examinees on item i



_atent Space Model

 How to interpret dependence: under a network structure
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Doubly Latent Space Model

« Capture local item and person dependence: doubly LSM
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Doubly Latent Space Model

« Capture local item and person dependence: doubly LSM

item pairs

1 2 3 4 5 6

/ \\ 1 0 0 0 0 0 O

2 0 0 1 O o0 1

3 0 1 0 0 0 1

/ \ 4 0 0 0 0 0 O

lg —__ i 5 0 0 0 0 0 O

. 6 0 1 1 0 0 0
ltems ans_wereq by examinee j who answers
examinee j item 2, 3, and 6 correctly

Ui« = {xjixjx} (tem i and item k)



Doubly Latent Space Model

« Capture local item and person dependence: doubly LSM

Responses of different
examinees on item i

examinee pairs

1 2 9 11

1 0 1 1 0

2 1 0 1 0

1 0

9 1 1 1 O 0

1 0 0 0 O 0

item i being answered correctly
only by examinee 1, 2, and 9

Y; nxnv = {xjix;;} (€Xaminee j and examinee [)
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 How to model the probability of a relation between nodes: embedding

the concept of “social space”
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 How to model the probability of a relation between nodes: embedding

the concept of “social space”

— an (maybe unappropriated) illustration:

e

pg \ 'ul \\
<0 Sp B These students came
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* p-dimensional latent space (typically 2-3 dimensions)

Ui i = {xjixjk} @

g

multiple networks
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* p-dimensional latent space (typically 2-3 dimensions)
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e multiple networks
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Latent Space Item Response Model

* A concise version Is needed
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multiple networks multiple networks

1. work with functions of item response data
2. deal with multiple networks
3. must combine two LSMs for simultaneous estimation: w; = f;(Z)



Latent Space Item Response Model

17

* A concise version Is needed

Z “\W

@) O G0 )0y

multiple networks multiple networks

1. work with functions of item response data
2. deal with multiple networks
3. must combine two LSMs for simultaneous estimation: w; = f;(Z)

work with original response data & single network
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» Work with original response data & single network
— original response data: Y e {0, 1}/V*!

— a single network?
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* Work with original response data & single network
— original response data: Y e {0, 1}/V*!

— a single network?

X X X X X X X respondent set

2 X-nodes:
Y-nodes: ;Eéo ;\g 1/ 1

J Yo Y, Y. Y. Y Y item set



Latent Space Item Response Model

« Work with original response data & single network

— original response data:

— a single network?

Y €

{O, I}NXI

bipartite network

X,

X3

X,

X5 X6 X7 X8

X1
X-nodes:
Y-nodes: ; i(o ég \q; 1

Yi

Y

Ys

Y, Y5 Y (a)

X -projection

Y-projection
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1 Y, Y,
2
y60 2 2 Y,
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Y, y, (c)
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« Work with original response data & single network

— original response data: Y e {0, 1}/V>*/

— a single network: logit(P(Y;; =11|«aj, Bi, aj, b)) = aj+ pi +gla;, b;)
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« Work with original response data & single network

— original response data: Y e {0, 1}/V>*/

— a single network: logit(P(Y;; =11|«aj, Bi, aj, b)) = aj+ pi +gla;, b;)

1. multiplicative effect g(a;, b;) = aJT bi

2. distance effect g(a;, b;) = —y d(aj, b;)
weight distance
(= 0)
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« Work with original response data & single network

— original response data: Y e {0, 1}/V>*/

— a single network: logit(P(Y;; =11|«aj, Bi, aj, b)) = aj+ pi +gla;, b;)

e reflexivity: d(a, b) = 0 if and only ifa = b € M
e symmetry: d(a, b) = d(b, a) forall a, b € M
e triangle inequality: d(a, b) < d(a,c) + d(b, c) forall a, b, ¢ € M.

1. multiplicative effect g(a;, b;) = aJT bi

2. distance effect g(a;, b;) = —y d(aj, b;)
weight distance
(= 0)

a) ¢,-distance: d(a, b) = |la — b||y = >_I_, |a; — b;|
b) ¢,-distance: d(a. b) = lla — blls = /S0 (@i — b;)?

C) {-distance: d(a, b) = |la — b||c = maxi<i<p |a; — b




Latent Space Item Response Model
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« Work with original response data & single network

— original response data: Y e {0, 1}/V>*/

— a single network: logit(P(Y;; =11|«aj, Bi, aj, b)) = aj+ pi +gla;, b;)

1. multiplicative effect g(a;, b;) = aJT bi

2. distance effect g(a;, b;) = —y d(aj, b;)

weight distance
(= 0)

y = 0: Rasch model
y > 0: capture deviations from the main effects
(embed respondents into a shared metric space)



Latent Space Item Response Model

* The distance effect is easier to interpret than the multiplicative effect

a; = (0, 1/100) a; = (0, 100)
b; = (1/100, 0) b; = (100, 0)



Latent Space Item Response Model
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* The distance effect is easier to interpret than the multiplicative effect

a; = (0, 1/100) a; = (0, 100)
b; = (1/100, 0) b; = (100, 0)
1. multiplicative effect aJT b; =0 aJT bi =0
2. distance effect d(a;, b;) = 0.01 da;, b;) = 141.42

({2 -distance)

angle & length!
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« Two main lines of research involving networks

1. Graphical models (model structure):
vertices: the variables of interest
edge: conditional dependencies among variables
(data structure):
vertices: individuals

edge: friendships among individuals / correct responses
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 Practical advantages

— provides a geometric representation of interactions
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 Practical advantages

— provides a geometric representation of interactions

logit(P(y;: = 1| aj,8:,(i)) = o + Bi + i

1. Rasch:
14 items & 200 respondents ;; = 0

first 100 respondents — item 1-7 {;;~N(2,0.2) item8-14¢;; =0
last 100 respondents — item 8-14 {;;~N(2,0.2) item1-7 {;; =0

latent space dimension: M = R?
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 Practical advantages
— provides a geometric representation of interactions

(a) Rasch model (b) Rasch model with local dependence
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» Theoretical advantages

— weaker conditional independence assumption

N I
PY=yla B, v, A B) = [| ]| Pi=yjilaj Bi.v. a;. b))
j=1i=1

= (ay,...,an),B=(B1,-.., Bi1),A=(ay,..., ay),and B = (by, ..., by)

allow for respondent—item interactions:
v’ testlets (e.g., items similar in content)
v' learning and practice effects

v’ repeated measurements

v nested respondents (shared school or family memberships)
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» Theoretical advantages

— drop some of the homogeneity assumptions
same abilities: respondents j; and j,

different distances from item i: d(a;,, b;) < d(aj,, b;)
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» Theoretical advantages

— drop some of the homogeneity assumptions
same abilities: respondents j; and j,

different distances from item i: d(a;,, b;) < d(aj,, b;)

algebra items

geometry items

Response I1 12 I3 14 I5 16
1 1 1 1 0 0 0
2 1 1 1 0 0 0
3 0 0 0 1 1 1
4 0 0 0 1 1 1




Properties

» Theoretical advantages

— drop some of the homogeneity assumptions

(a) Two response patterns

0.50=

-;;g_..:ﬁ': >

0.25=

0.00=

- R

Respondents 51-100 give correct
responses to ltems 4-6 only

Respondents 1-50 give correct
responses to ltems 1-3 only
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» Theoretical advantages

— drop some of the homogeneity assumptions

(a) Two response patterns (b) Two response patterns

0.50=

0.2=

-,-"aﬁ': ;';‘ -

0.25=

0.0~

0.00=

. " '.3-*}‘ -'I'.' -

Y 2 O

, with randomness

1
0.5

li;c -‘nf:' 0..

™ -
L
.

80 have two patterns
+

20 give random
responses
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« Other models with relaxed assumptions

— polytomous item models
— testlet and bifactor models
— finite mixture models

1. require knowledge of the interaction structure
2. heterogeneity between latent classes, but assume



Related Models
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« Other models with interactions among respondents and items

— two-parameter IRT model

logit(P(Y;; =11 aj, Bi, Ai)) = A aj+ B
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« Other models with interactions among respondents and items

— two-parameter IRT model

logit(P(Y;; =11 aj, Bi, Ai)) = A aj+ B

— interaction IRT model
logit(P(Y;; =1 |}, Bi, €i) = aj +pi +€;,

latent space model can be viewed as a special case: €;; = —y d(a;, b;)



Related Models
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« Other models with interactions among respondents and items

— bhilinear mixed effects models and related models

— differential item functioning

an interaction term is formed with a known categorical attribute of
respondents (e.g., gender) and an item indicator



Bayesian Inference

40

« Markov Chain Monte Carlo (MCMC)

logit(P(Y;; = 1| aj, Bi, aj, b;)) = o; +p; +g(a;, b;)
glaj, b;) = —y d(aj, b;)

— (Posterior)~ (Prior) ( )
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« Markov Chain Monte Carlo (MCMC)

logit(P(Y;,; = 1| «aj, Bi, aj, b;))) = aj +Bi +gla;, b;)

gla;, b)) = —y d(a;,b;)

— (Posterior)~ (Prior) ( )
N

fla, B, v, A, B|y) x [—[ flaj)
J=1

X

N 1

j=li=1

1 N
} []‘[f(ﬁf)} ) {]‘[ f(a))
i=1

j=1

]P)(YJ,; =y],1 |Q!_]:| ﬁfa YV, aja bl) ’
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« Markov Chain Monte Carlo (MCMC)

logit(P(Y;,; = 1| «aj, Bi, aj, b;))) = aj +Bi +gla;, b;)
g@aj, bj) = —y d(aj, b;)

— (Posterior)~ (Prior) ( )
priors:
aj | o? irf}gN(O,crz), 62>0, j=1,...,N
ind
Bi | 73 e N(o,rg), 250, i=1,...1
logyluy,t}%NN(u},, ‘L'}%), ny € R, r3>0
0% |ay, by ~ Inv-Gamma (ay, by), day >0, by >0
a; * MVN, (0, I,), j=1,....N
b, KOMVN, (0, 1,), i=1,..., I,

5 =404, =1,bp = 1,1, =0.5,77 =1



Bayesian Inference
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* |dentifiability

a) ¢-distance: d(a, b) = |la — b[|y = >_/_; |lai — b;|

b) ¢,-distance: d(a, b) = ||a — b||, = \/Zf’zl(ai — b;)?

C) {~-distance: d(a, b) = |la — b||coc = maxi<;<, |a;

undirected: distances are inherently symmetric

— b
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* |dentifiability

— post-processing the MCMC output with

three transformation steps of an ordinary Procrustes fit
for two configurations (from WiKi)
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* |dentifiability

— post-processing the MCMC output with

three transformation steps of an ordinary Procrustes fit
for two configurations (from WiKi)

observed matrix A
target matrix B

find a transformation T, to produce
greatest similarity between AT and B
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 Model selection
logit(P(Y;; =1 |«j, Bi, a;, b;))) = aj+ Bi +g(a;, b))
glaj, b;) = —y d(a;, b;)

y=0o0ry>07?
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47

 Model selection
logitP(Y;; =1 |«j, Bi, a;, b;)) = aj+ pi +g(a;,
glaj, bj) = —y d(aj, b;)

y=0o0ry>07?

— spike-and-slab prior

y is likely to be sampled from N(0,0.01) or N(0,1)?

b;)

1.04

0.8

Density

0.4

0.2+

0.0-

0.61

Spike-and-Slab Prior

N(0, 1)
/erro

-1 0 1 2 3

Fig made by Fabian Dablander
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 Model selection
logit(P(Y;; =1|«aj, Bi, aj, b;))) = aj+ B +g(a;, b))
glaj, b;) = —y d(a;, b;)

y=0o0ry>07?

— spike-and-slab prior (6 € {0,1})

logy ~ (1 =8) Npike(ityys Tpy) + 8 Nytap(thy,, T

mean 0.08, SD 0.01
Ne1ap(0.5,1): mean 2.72, SD 3.56

y = 0, the posterior probability of § =1 < 0.5
y > 0, otherwise

1.04

0.8

Density

0.4

0.2+

0.0-

0.61

Spike-and-Slab Prior

N(0, 1)
/erro

-1 0 1 2 3

Fig made by Fabian Dablander
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* The accuracy of model selection approach

1. Rasch:

_ 100 datasets with y = 0
14 items & 200 respondents

first 100 respondents — item 1-7 100 datasets with y = 1.7
last 100 respondents — item 8-14

— compute the proportion of times § = 1 in the MCMC posterior sample



Simulation Study
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(a) Truth: v =0

60- -ﬁ
40-
i
20-
o
0.00 0.05 0.10 0.15

Posterior inclusion probability

300-

200-

100-

0_

(b) Truth: v = 1.7

—
— |
|

o

0.985 0.990 0.995
Posterior inclusion probability

Histogram of the estimated posterior probability of the event § = 1, called “posterior inclusion probability.” a Data are
generated from the Rasch model with y = (. b Data are generated from the latent space model with y = 1.7



Example 1: Attitudes to Abortion

5l

 Data and estimation

The woman decides on her own that she does not wish to have the child
The couple agree that they do not wish to have the child

The woman is not married and does not wish to marry the man

The couple cannot afford any more children.

There is a strong chance of a defect in the baby

The woman'’s health is seriously endangered by the pregnancy

The woman became pregnant as a result of rape

NV kE L=

0.42,0.52,0.47, 0.53, 0.86, 0.94, 0.93

— 20,000 iterations (10,000 burn-in)
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 Data and estimation

The woman decides on her own that she does not wish to have the child
The couple agree that they do not wish to have the child

The woman is not married and does not wish to marry the man

The couple cannot afford any more children.

There is a strong chance of a defect in the baby

The woman'’s health is seriously endangered by the pregnancy

The woman became pregnant as a result of rape

NV kE L=

0.42, 0.52,0.47, 0.53, 0.86, 0.94, 0.93
— 20,000 iterations (10,000 burn-in)

— Convergence: the scale reduction factor < 1.06 _
move forward with the latent space model

— Model selection: probability of § = 1 was 0.99
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0.05-
0.00 :; ;":.:". '.. . :%
'_::.: oo
ourE
¢ L IE
- » 7
oo y = 1.25 [0.92, 1.54]
0.4

1 n
0.0 0.2

FIGURE 3.
Estimated latent space for the attitudes to abortion data. Red numbers represent items, and blue dots represent respondents
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the region of X > 0.3 and ¥ > 0.025
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27
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1
1
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1
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1
1
0
0

S oo o O o —C

ScC oo oo —= O oo
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These people tend to give positive responses to I1-14, but negative responses to 15-17
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(a) LS B

: M )

(b) Rasch j3;
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Example 1: Attitudes to Abortion

5/

1.00-

L+

0.75-

L

0.25-

0.5

Predicted proportion
[=1]

Item

Predicted proportions of the positive responses for the seven items for the attitudes to abortion data. The red dot in each
box indicates the proportion of positive responses calculated from the raw data
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 Data and estimation

— the Competence Profile Test of Deductive Reasoning—Verbal assessment (DRV)

— 24 binary items (0 = correct, 1 = incorrect)
— 418 school students (162 female)

Precedent of antecedent  Content of conditional Type of inference
No Negation (UN) Concrete (CO) Modus Ponens (MP)
Negation (N) Abstract (AB) Modus Tollens (MT)
Counterfactual (CF) Negation of Antecedent (NA)

Affirmation of Consequence (AC)
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 Data and estimation

— the Competence Profile Test of Deductive Reasoning—Verbal assessment (DRV)

— 24 binary items (0 = correct, 1 = incorrect)
— 418 school students (162 female)

— 20,000 iterations (10,000 burn-in)

— Convergence: the scale reduction factor < 1.1

_ . move forward with the latent space model
— Model selection: probability of § = 1 was 0.99
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(a) ﬁ’b (b) Q.

Theta estimates

aaaaaaaaaaaaaaaaaaaaaaaa

T T T T S T S T S AT
4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Sum score

a 95% posterior credible intervals for the B; estimates (bl and b24 on the X-axis represent Items 1 to 24), and b the
distribution of the o ; estimates per total test score for the DRV data. The estimates are from the latent space model



Example 2: Deductive Reasoning

ol

1.00-

0.75- . ® T
L ]
L ]
=
8
=y
[=]
(=N
e
= 0.50-
2
E L]
= L]
o
a .
[ ]
0.25-
L ]
[ ]
0.00 -
1 2 3 4 5 6 T 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Item

Box plots of the predicted proportions of the correct responses for the 24 DRV test items from 10,000 replicated data. The
red dot in each box indicates the proportion of the correct responses for the corresponding item from the raw data
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Deductive Reasoning
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(a) DRV latent space

Il 15

1{o 1423
4819

13
21

|3 17

16 24

12

14

y = 2.23 [2.08,2.35]
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Members of the four item groups identified in the DRV data latent space

Item group

Group details

I1
12

I3

14

UN_CO_NA (2); UN_CO_AC (3): N_CO_NA (6); N_CO_AC (7)
UN_AB_NA (10); UN_AB_AC (11); N_AB_NC (14); N_AB_AC (15);
UN_CF_NA (18); UN_CF_AC (19); N_CF_NA (22); N_CF_MT (23)
UN_AB_MP (9); UN_AB_MT (12); N_AB_MP (13);:N_AB_MT (16);
UN_CF_MP (17); UN_CF_MT (20); N_CF_MP (21); N_CF_MT (24)
UN_CO_MP (1); UN_CO_MT (4): N_CO_MP (5); N_CO_MT (8)

Numbers in parenthesis indicate item numbers. The acronyms in the item labels indicate the following
design factors and their levels: (1) UN vs. N: no negation (UN) and Negation (N) for the presentation of the
antecedent factor. (2) CO vs. AB vs. AC: Concrete (CO), Abstract (AB), and Counterfactual (CF) for the
content of conditional factor. (3) MP vs. MT vs. NA vs. AC: Modus Ponens (MP), Modus Tollens (MT),
Negation of Antecedent (NA), and Affirmation of Consequent (AC) for the type of inference factor



Example 2: Deductive Reasoning

04

(a) Item group I1 (b) Item group I2
i A
“e ™ L o
& \
(c) ltem group 13 (d) Item group 14

4
Legil Prak

i
E]

e
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— Cosine similarity between item groups cos() 5
a' b

cos(f) =
llall2 [1b]]2
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Cosine similarity measures between (centers of) the four item groups

I1 12 I3 14
I1 —
12 0.618 -
I3 —0.680 —0.996 —
14 —0.996 —0.546 0.613 -

(b) with item group vectors

11 ' 12
11 1403
] 5 819
0
1
9T 21
13 7 ) 14
- 12 20

16 24



Example 2: Deductive Reasoning

— Respondent structure

logical fallacy : : - abstract or
: ) simpler inference concrete conditionals
inference items counterfactual

(NA/AC) items (MP/MT) (CO) conditionals (AB/CF)
Children near 11 v X X
Children near 12 V X
Children near 13 X v
Children near 14 X V X



Example 2: Deductive Reasoning

(a) DRV latent space

— Respondent structure

logical fallacy - abstract or
inference item counterfactual
(NA/AC) onditionals (AB/CF)
Children near 11 V
Children near 12 \ N
Children near 13 X
Children near 14 X ol 3
21
17
12 20

16 24

] 1 ]
-1 [} 1
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0.4-

0.2-

compz2

0.0-

PCA

0o
comp1

21
17

20

24

13

12

16

' '
0.1 0.2

factor2

0.00-

%3

1

15

#

Factor analysis

0o
factor1

13

16

24

20

124

DRV latent space

15

1101423
23819
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12

23
15 14
19

158

11 14

21

13
g 17

20
24

Type of Inference combined with
Abstract and Counterfactual conditionals

16

13

(] (] ] ] ]
-2 —1 0 1 2

Rotated latent space for the DRV data with oblim rotation. Dots represent respondents and numbers represent items. Four
item groups are distinguished with four different colors. I1: Items 2, 3, 6, 7; 12: Items 10, 11, 14, 15, 18, 19, 22, 23; I3:
Items 9, 12, 13, 16, 17, 20, 21, 24; 14: Items 1, 4, 5,8 (Color figure online)
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* interactions among respondents and items are present and non-negligible

« whether test items are differentiated or grouped together as blueprinted by
test developers

(e.g., the Presentation of Antecedent barely contributed to item differentiation)

 detect unintended or undesirable forms of test-taking behavior
(e.g., respondents that are located close to the last test items)

 provide feedback on the test performance
(e.g., identify items that individual test takers may be struggling with)



THANKS FOR ATTENTIONT!

REPORTER
YINGSHI HUANG
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