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• Item response theory (IRT)

1. conditional independence (between respondents, between items)

2. consistency of success probability (same ability, same easiness)

unobserved interaction / dependence 

(same ability, different cultures)



Introduction

− respondent 𝑗 & item 𝑖

5

• Item response theory (IRT)

1. conditional independence (between respondents, between items)

2. consistency of success probability (same ability, same easiness)

• Purpose:

− introduce a novel latent space model

represent interactions of respondents and items

unobserved interaction / dependence 
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• How to interpret dependence: under a network structure

p9

p5 p1

p3

p8

p2

p10

p6 p11

p7

p4

dependence

p9

p5 p1

p3

p8

p2

p10

p6 p11

p7

p4Some examinees 
decided to take risks

(group cheating)
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• Capture local item and person dependence: doubly LSM

Ick Hoon Jin, Minjeong Jeon, 2019 Psychometrika
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Doubly Latent Space Model 10

• Capture local item and person dependence: doubly LSM

Ick Hoon Jin, Minjeong Jeon, 2019 Psychometrika

i5

i1

i3

i2

i6

i4

Items answered by 
examinee 𝑗

1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 0 1 0 0 1

3 0 1 0 0 0 1

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 1 1 0 0 0

examinee 𝑗 who answers 
item 2, 3, and 6 correctly

𝑼𝑗,𝐼×𝐼 = {𝑥𝑗𝑖𝑥𝑗𝑘} (item 𝑖 and item 𝑘)

item pairs
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• Capture local item and person dependence: doubly LSM

Ick Hoon Jin, Minjeong Jeon, 2019 Psychometrika

p9

p5 p1

p3

p8

p2

p10

p6 p11

p7

p4

Responses of different 
examinees on item 𝑖

1 2 … 9 … 11

1 0 1 1 0

2 1 0 … 1 0

… … 1 … 0

9 1 1 1 0 0

… …

11 0 0 0 0 0

item 𝑖 being answered correctly 
only by examinee 1, 2, and 9

𝒀𝑖,𝑁×𝑁 = {𝑥𝑗𝑖𝑥𝑙𝑖} (examinee 𝑗 and examinee 𝑙)

examinee pairs



Doubly Latent Space Model 12

• How to model the probability of a relation between nodes: embedding

Ick Hoon Jin, Minjeong Jeon, 2019 Psychometrika

the concept of “social space”

Peter D. Hoff, Adrian E. Raftery, Mark S. Handcock, 2002 JASA

a space of unobserved latent characteristics that represent 
potential transitive tendencies in network relations
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• How to model the probability of a relation between nodes: embedding

Ick Hoon Jin, Minjeong Jeon, 2019 Psychometrika

the concept of “social space”

Peter D. Hoff, Adrian E. Raftery, Mark S. Handcock, 2002 JASA

a space of unobserved latent characteristics that represent 
potential transitive tendencies in network relations

− an (maybe unappropriated) illustration:

These students came 
from the same school

(social space: school)
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• p-dimensional latent space (typically 2-3 dimensions)

Ick Hoon Jin, Minjeong Jeon, 2019 Psychometrika
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• p-dimensional latent space (typically 2-3 dimensions)

Ick Hoon Jin, Minjeong Jeon, 2019 Psychometrika

𝑼𝑗,𝐼×𝐼 = {𝑥𝑗𝑖𝑥𝑗𝑘}

𝒀𝑖,𝑁×𝑁 = {𝑥𝑗𝑖𝑥𝑙𝑖}

𝑼1 𝑼2 𝑼𝑁
…

𝑾

𝒀1 𝒀2 𝒀𝐼…

𝒁

𝑃 𝒀 𝒁, 𝜷 =ෑ

𝑖=1

𝐼

𝑃 𝒀𝑖 𝒁; 𝛽𝑖 =ෑ

𝑖=1

𝐼

ෑ

𝑗≠𝑙

exp 𝛽𝑖 − 𝒛𝑗 − 𝒛𝑙
𝑦𝑖,𝑗𝑙

1 + exp 𝛽𝑖 − 𝒛𝑗 − 𝒛𝑙

𝑃 𝑼 𝑾,𝜶 =ෑ

𝑗=1

𝑁

𝑃 𝑼𝑗 𝑾;𝛼𝑗 =ෑ

𝑗=1

𝑁

ෑ

𝑖≠𝑘

exp 𝛼𝑗 − 𝒘𝑖 −𝒘𝒌
𝑢𝑗,𝑖𝑘

1 + exp 𝛼𝑗 − 𝒘𝑖 −𝒘𝒌

multiple networks

multiple networks
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• A concise version is needed
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…
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1. work with functions of item response data

2. deal with multiple networks

3. must combine two LSMs for simultaneous estimation: 𝒘𝑗 = 𝑓𝑗(𝒁)



Latent Space Item Response Model 17

• A concise version is needed

𝑼1 𝑼2 𝑼𝑁
…

𝑾

𝒀1 𝒀2 𝒀𝐼…

𝒁

multiple networksmultiple networks

Ick Hoon Jin, Minjeong Jeon, 2019 Psychometrika

1. work with functions of item response data

2. deal with multiple networks

3. must combine two LSMs for simultaneous estimation: 𝒘𝑗 = 𝑓𝑗(𝒁)

work with original response data & single network
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• Work with original response data & single network

− original response data:

1 2 … 𝑖 … 𝐼

1

2

…

𝑗
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− a single network?



Latent Space Item Response Model 19

• Work with original response data & single network

− original response data:

Tao Zhou, Jie Ren, Matus Medo, Yi-Cheng Zhang, 2007 Physical Review E

− a single network?

1 2 … 𝑖 … 𝐼

1

2

…

𝑗

…

𝑁

respondent set

item set
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• Work with original response data & single network

− original response data:

bipartite network

Tao Zhou, Jie Ren, Matus Medo, Yi-Cheng Zhang, 2007 Physical Review E

− a single network?

1 2 … 𝑖 … 𝐼

1

2

…

𝑗

…

𝑁
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• Work with original response data & single network

− original response data:

− a single network:

the position of 
respondent 𝑗 and item 𝑖
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• Work with original response data & single network

− original response data:

− a single network:

the position of 
respondent 𝑗 and item 𝑖

1. multiplicative effect

2. distance effect

weight

(≥ 0)

distance

a) -distance:

b) -distance:

c) -distance:
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• Work with original response data & single network

− original response data:

− a single network:

the position of 
respondent 𝑗 and item 𝑖

1. multiplicative effect

2. distance effect

weight

(≥ 0)

distance

𝛾 = 0: Rasch model

𝛾 > 0: capture deviations from the main effects

(embed respondents into a shared metric space)
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• The distance effect is easier to interpret than the multiplicative effect
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• The distance effect is easier to interpret than the multiplicative effect

1. multiplicative effect

2. distance effect

(    -distance)

angle & length!
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• Two main lines of research involving networks 

1. Graphical models (model structure):

vertices: the variables of interest

edge: conditional dependencies among variables

2. Random graph models (data structure):

vertices: individuals

edge: friendships among individuals / correct responses
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• Practical advantages

− provides a geometric representation of interactions
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• Practical advantages

− provides a geometric representation of interactions

1. Rasch:

14 items & 200 respondents 𝜁𝑗,𝑖 = 0

2. Rasch with local dependence:

first 100 respondents → item 1-7   𝜁𝑗,𝑖~𝑁(2, 0.2) item 8-14 𝜁𝑗,𝑖 = 0

last 100 respondents → item 8-14 𝜁𝑗,𝑖~𝑁 2, 0.2 item 1-7   𝜁𝑗,𝑖 = 0

latent space dimension: 
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• Practical advantages

− provides a geometric representation of interactions

red: item 1-7

green: item 8-14

blue: respondents
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• Theoretical advantages

− weaker conditional independence assumption

allow for respondent–item interactions:

✓ testlets (e.g., items similar in content)

✓ learning and practice effects

✓ repeated measurements

✓ nested respondents (shared school or family memberships) 
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• Theoretical advantages

− drop some of the homogeneity assumptions

same abilities: respondents 𝑗1 and 𝑗2

different distances from item 𝑖:



Properties 33

• Theoretical advantages

− drop some of the homogeneity assumptions

same abilities: respondents 𝑗1 and 𝑗2

different distances from item 𝑖:

algebra items geometry items
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• Theoretical advantages

− drop some of the homogeneity assumptions

Respondents 1–50 give correct 

responses to Items 1–3 only

Respondents 51-100 give correct 

responses to Items 4-6 only
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• Theoretical advantages

− drop some of the homogeneity assumptions

80 have two patterns

+

20 give random 

responses
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• Other models with relaxed assumptions

− polytomous item models

− testlet and bifactor models

− finite mixture models

− …

1. require knowledge of the interaction structure

2. heterogeneity between latent classes, but assume homogeneity 
within latent classes
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• Other models with interactions among respondents and items 

− two-parameter IRT model

cannot visualize interactions 
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• Other models with interactions among respondents and items 

− two-parameter IRT model

cannot visualize interactions 

− interaction IRT model

latent space model can be viewed as a special case: 

the restrictions 1. facilitate estimation

2. make sense in practice (capture transitivity)
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• Other models with interactions among respondents and items 

− bilinear mixed effects models and related models

the multiplicative effects version 

− differential item functioning

an interaction term is formed with a known categorical attribute of 

respondents (e.g., gender) and an item indicator

require pre-knowledge 
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• Markov Chain Monte Carlo (MCMC)

− (Posterior)∼ (Prior) (Likelihood)
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• Markov Chain Monte Carlo (MCMC)

priors:

− (Posterior)∼ (Prior) (Likelihood)
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• Identifiability

a) -distance:

b) -distance:

c) -distance:

undirected: distances are inherently symmetric

invariant to translations, reflections, and rotations 
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• Identifiability

− post-processing the MCMC output with Procrustes matching 

three transformation steps of an ordinary Procrustes fit 
for two configurations (from WiKi)
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• Identifiability

− post-processing the MCMC output with Procrustes matching 

three transformation steps of an ordinary Procrustes fit 
for two configurations (from WiKi)

observed matrix 𝐴
target matrix 𝐵

find a transformation 𝑇, to produce 

greatest similarity between 𝐴𝑇 and 𝐵

relative distances between positions
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• Model selection

𝛾 = 0 or 𝛾 > 0 ?
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• Model selection

𝛾 = 0 or 𝛾 > 0 ?

− spike-and-slab prior

Fig made by Fabian Dablander

𝑁(0, 0.01)
results in zero

𝑁(0, 1)
results in non-zero

𝛾 is likely to be sampled from N(0,0.01) or N(0,1)?
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• Model selection

𝛾 = 0 or 𝛾 > 0 ?

− spike-and-slab prior (𝛿 ∈ {0,1})

Fig made by Fabian Dablander

𝛾 = 0, the posterior probability of 𝛿 = 1 < 0.5

𝛾 > 0, otherwise

𝑁𝑠𝑝𝑖𝑘𝑒(−3,1): mean 0.08, SD 0.01

𝑁𝑠𝑙𝑎𝑏(0.5,1):  mean 2.72, SD 3.56

𝑁(0, 0.01)
results in zero

𝑁(0, 1)
results in non-zero
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1. Rasch:

14 items & 200 respondents

2. latent space model:

first 100 respondents → item 1-7

last 100 respondents → item 8-14

• The accuracy of model selection approach

100 datasets with 𝛾 = 0

100 datasets with 𝛾 = 1.7

− compute the proportion of times 𝛿 = 1 in the MCMC posterior sample



Simulation Study 50
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• Data and estimation 

0.42, 0.52, 0.47, 0.53, 0.86, 0.94, 0.93

− 20,000 iterations (10,000 burn-in)
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• Data and estimation 

0.42, 0.52, 0.47, 0.53, 0.86, 0.94, 0.93

− 20,000 iterations (10,000 burn-in)

− Convergence: the scale reduction factor < 1.06

− Model selection: probability of 𝛿 = 1 was 0.99
move forward with the latent space model
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𝛾 = 1.25 [0.92, 1.54]
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over 10,000 replicated data 
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• Data and estimation 

− the Competence Profile Test of Deductive Reasoning—Verbal assessment (DRV)

− 24 binary items (0 = correct, 1 = incorrect)

− 418 school students (162 female)

Precedent of antecedent Content of conditional Type of inference

No Negation (UN) Concrete (CO) Modus Ponens (MP)

Negation (N) Abstract (AB) Modus Tollens (MT)

Counterfactual (CF) Negation of Antecedent (NA)

Affirmation of Consequence (AC)
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• Data and estimation 

− the Competence Profile Test of Deductive Reasoning—Verbal assessment (DRV)

− 24 binary items (0 = correct, 1 = incorrect)

− 418 school students (162 female)

− 20,000 iterations (10,000 burn-in)

− Convergence: the scale reduction factor < 1.1

− Model selection: probability of 𝛿 = 1 was 0.99
move forward with the latent space model
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𝛾 = 2.23 [2.08, 2.35]

I1 I2

I3 I4
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− Cosine similarity between item groups

the angle between two 
vectors 𝒂 and 𝒃
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I1 I2

I3 I4
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− Respondent structure

logical fallacy 

inference items 

(NA/AC)

simpler inference 

items (MP/MT) 

concrete conditionals

(CO)

abstract or 

counterfactual

conditionals (AB/CF)

Children near I1 √ X X

Children near I2 √ X X

Children near I3 X √ X

Children near I4 X √ X
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− Respondent structure

logical fallacy 

inference items 

(NA/AC)

simpler inference 

items (MP/MT) 

concrete conditionals

(CO)

abstract or 

counterfactual

conditionals (AB/CF)

Children near I1 √ X X

Children near I2 √ X X

Children near I3 X √ X

Children near I4 X √ X
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I1

I2

I3

I4

Type of Inference combined with Concrete conditionals
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• interactions among respondents and items are present and non-negligible

• whether test items are differentiated or grouped together as blueprinted by 
test developers

(e.g., the Presentation of Antecedent barely contributed to item differentiation)

• detect unintended or undesirable forms of test-taking behavior

(e.g., respondents that are located close to the last test items)

• provide feedback on the test performance

(e.g., identify items that individual test takers may be struggling with)



THANKS  FOR  ATTENTION!

REPORTER

YINGSHI HUANG
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