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Introduction

» Personalized/adaptive learning

Feeling boredom because you already
mastered the classroom material?

,‘ Experiencing stress because the teacher
was teaching too fast for you?
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» Personalized/adaptive learning
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Introduction
* How to determine the tailored learning path for each learner?

- Goal:
maximize the overall reward along the whole learning process for each learner

— Key question:
makes decisions on what to learn at the next step



Introduction

* How to determine the tailored learning path for each learner?

— Three components:

Measurement model
(students’ current knowledge profile)

Learning model
(the learning process: relationship between learning materials and changes of knowledge profiles)

Recommendation strategy
(the selection of learning materials)



Introduction

* How to determine the tailored learning path for each learner?

— Three components:

Measurement model
(students’ current knowledge profile)

Learning model (prior): complex & require large sample size to calibrate
(the learning process: relationship between learning materials and changes of knowledge profiles)

Recommendation strategy
(the selection of learning materials)

‘ Purpose:
simultaneously build the learning model and recommendation strategy



Background

« Kskills: aq, a, ..., ay (mastery = 1, non-mastery =0)
e T time epochs: 0,1,..., T — 1
* Learning material pool: D

* Reward
» the number of skills being mastered at learning stage t:

* R(t) = Ygqlap(t+ 1) — ap(t)]

learning material d ‘ d(0) I [d(l)] [d(T—l)]
* the entire learning process:

« EQTZLR
(ie=0 R(®) latent skill @ : =@ > = ’@

reward R ‘ R(0) I | R(T_l)l




Background

* Measurement model:
* the probability of a specific response on item j: P(YV; = y|a)

 diagnostic models (discrete) or multidimensional IRT (continuous)




Background

* Measurement model:
* the probability of a specific response on item j: P(YV; = y|a)

 diagnostic models (discrete) or multidimensional IRT (continuous)

* Learning model:
* the effectiveness of each learning material

« a Markov chain (with no retrogression assumption): P;(a(t + 1) = a|a(t) = @)
ﬂ A — no arrow pointing from 1 to 0 only depends on time t

° o P(a(t+1) =0|a(t) =0) =0.3

0.7

- contain a large number of parameters: |D| x 2K

(the number of learning materials x all possible states of knowledge profiles)



Background

 Recommendation strategy:
 the probability that material d will be recommended at time t: policy
* T (d) =20 & Xgepme(d) =1

* lower benchmark: 1/|D|
* upper benchmark: oracle strategy "

« when no measurement error and learning model is known, that is, outperform any
policy under imprecise information

=)

approximate * by collecting students’ learning data in a strategic way
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Reinforcement Q-learning

* Objective:
* (1) bypass the estimation of learning model & (2) approximate n*

— how to optimize the policy without the learning model



Reinforcement Q-learning

* Objective:
* (1) bypass the estimation of learning model & (2) approximate n*

— how to optimize the policy without the learning model

- At learning stage t: unknown

\ ‘ What would happen after selecting different
1O learning materials is unknown
@ But we need to maximize the overall reward
\ ces ces ees

\Z




Reinforcement Q-learning

* The principle of reinforcement learning:
 learn in an interactive environment by trial and error

« find a suitable action model (sequential actions) that would maximize the total
cumulative reward (a long-term goal) of the agent

Environment
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Reinforcement Q-learning 14

* The principle of reinforcement learning:
 learn in an interactive environment by trial and error

« find a suitable action model (sequential actions) that would maximize the total
cumulative reward (a long-term goal) of the agent

Environment

* |n this case: —l".'_ l‘_;
- Agent — online learning platform - -
« State — knowledge profile a(t) Reward Actions
’ ey
» Action — selection of learning material >tate >
f@ _
* Environment — learners Y pe
| i gyaas
* Reward — the changes of knowledge profile =
REL,

Agent



Reinforcement Q-learning

« Q-learning algorithm:

« Determine action sequence with Q table State 1

Action 1
-5

Action 2
10

/ ~Action 1

Stafe 1

Action 2
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Reinforcement Q-learning

« Q-learning algorithm:

« Determine action sequence with Q table State 1

Action 1
0

Action 2
0

=
/ Action 1

Stéte 1

Action 2
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« Q-learning algorithm: Action1  Action 2
- Determine action sequence with Q table State 1 -5 0
Action 1 Action 1 Actlon 1

State 1




Reinforcement Q-learning

« Q-learning algorithm:
» Determine action sequence with Q table

* The sum of the expected reward gained in the remaining training epochs
T—-1
0i(a,d) =E| ) R)lad,m’
s=t

« Maximize Q{(a, d) to select the next learning material
d* = argmax Q;(a, d)
d



Reinforcement Q-learning

« Q-learning algorithm:
» Determine action sequence with Q table

* The sum of the expected reward gained in the remaining training epochs
T—-1
0i(a,d) =E| ) R)lad,m’
s=t

« Maximize Q{(a, d) to select the next learning material
d* = argmax Q;(a, d)
d

« Example: two skills (K = 2) with two set of learning materials in two time epochs (T = 2)

=0 r=1

@, 0 1.26 0.60 0.60 0.00
1,0 0.70 0.91 0.00 0.70
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Reinforcement Q-learning 20

« Q-learning algorithm:
» Determine action sequence with Q table

* The sum of the expected reward gained in the remaining training epochs
T—-1
0i(a,d) =E| ) R)lad,m’
s=t

« Maximize Q{(a, d) to select the next learning material
d* = argmax Q;(a, d)
d

« Example: two skills (K = 2) with two set of learning materials in two time epochs (T = 2)

=0 r=1

o d=1 d=2 d=1 d=2 |

T x 2% x |D|
(0, 0) 1.26 0.60 0.60 0.00
1, 0 0.70 0.91 0.00 0.70 S0 complex!




Reinforcement Q-learning

« Q-learning algorithm:

* Q;(a,d) is approximated by a linear model
p
0@d =) b i@
=1

—from T x 2K x |D|to T x p X |D| (p K 2K)

21

finite dimensional vector
functions summarizing features of &



Reinforcement Q-learning

« Q-learning algorithm:

* Q;(a,d) is approximated by a linear model
finite dimensional vector

22

p
_ _ (td) ;
Q@ d, ) = z B (@) gynctions summarizing features of @&
=1

—from T x 2K x |D|to T x p X |D| (p K 2K)

« Example: a main effect linear model

K
0:@.d.B) ="+ ) pl @

=t the posterior probability of a; (t) =1

‘ Our problem becomes the estimation of 8



Reinforcement Q-learning

* The estimation of f:
 the balance between exploration (exploring new path) and
exploitation (following the current “best” path)

Initialize (3

l o (dla) - P 0@ d. )
Construct policy T |e———— t Y epexp(y1Q:(a, d', B))
l exploration parameter > 0
Collect data according to « v, = 0: purely random
l v, = co: completely follows the current Q-function

Update (3 using data

new = pPld 4 learning rate X A,

23



Take home message

« Adaptive Learning aims to provide tailored learning trajectory for
every individual

* Three key components in personalized learning
« Measurement model, learning model, and recommendation strategy

* Facilitating a solution with reinforcement Q-learning

« Determine an optimal action sequence that maximizes the long-term reward
through collecting feedbacks from the environment

24



7he End. Thanks

for Listening!
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Reporter: Yingshi Huang Scan here to subscribe :)
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