British Journal of Mathematical and Statistical Psychology

the british psychological society

A reinforcement learning approach to personalized learning recommendation systems

Xueying Tang¹, Yunxiao Chen²*, Xiaoou Li³, Jingchen Liu¹ and Zhiliang Ying¹

¹Department of Statistics, Columbia University, New York, New York, USA ²Department of Psychology, Institute for Quantitative Theory and Methods, Emory University, Atlanta, Georgia, USA

³School of Statistics, University of Minnesota, Minneapolis, Minnesota, USA

Reporter: Yingshi Huang

Personalized/adaptive learning

Feeling boredom because you already mastered the classroom material?

Experiencing stress because the teacher was teaching too fast for you?

Personalized/adaptive learning

• How to determine the tailored learning path for each learner?

- Goal:

maximize the overall reward along the whole learning process for each learner

- Key question:

makes decisions on what to learn at the next step

5

• How to determine the tailored learning path for each learner?

- Three components:

Measurement model (students' current knowledge profile)

Learning model

(the learning process: relationship between learning materials and changes of knowledge profiles)

Recommendation strategy (the selection of learning materials)

• How to determine the tailored learning path for each learner?

- Three components:

Measurement model (students' current knowledge profile)

Learning model (prior): complex & require large sample size to calibrate

(the learning process: relationship between learning materials and changes of knowledge profiles)

Recommendation strategy (the selection of learning materials)

- K skills: $\alpha_1, \alpha_2, \dots, \alpha_k$ (mastery = 1, non-mastery =0)
- T time epochs: 0,1, ..., T 1
- Learning material pool: $\ensuremath{\mathcal{D}}$
- Reward
 - the number of skills being mastered at learning stage *t*:
 - $R(t) = \sum_{k=1}^{K} [\alpha_k(t+1) \alpha_k(t)]$
 - the entire learning process:
 - $E(\sum_{t=0}^{T-1} R(t))$

- Measurement model:
 - the probability of a specific response on item *j*: $P(Y_j = y | \alpha)$
 - <u>diagnostic models (discrete)</u> or multidimensional IRT (continuous)

- Measurement model:
 - the probability of a specific response on item *j*: $P(Y_j = y | \alpha)$
 - diagnostic models (discrete) or multidimensional IRT (continuous)
- Learning model:
 - the effectiveness of each learning material
 - a Markov chain (with no retrogression assumption): $P_d(\alpha(t+1) = \alpha | \alpha(t) = \tilde{\alpha})$

 $\xrightarrow{0.3}_{0.7} \xrightarrow{1}_{0.7} P(\alpha(t+1) = 0 | \alpha(t) = 0) = 0.3$

• contain a large number of parameters: $|\mathcal{D}| \times 2^{K}$

(the number of learning materials \times all possible states of knowledge profiles)

only depends on time t

- . .
- Recommendation strategy:
 - the probability that material d will be recommended at time t: policy π
 - $\pi_t(d) \ge 0 \& \sum_{d \in \mathcal{D}} \pi_t(d) = 1$
 - lower benchmark: $1/|\mathcal{D}|$
 - upper benchmark: oracle strategy π^*
 - when no measurement error and learning model is known, that is, outperform any policy under imprecise information

approximate π^* by collecting students' learning data in a strategic way

11

- Objective:
 - (1) bypass the estimation of learning model & (2) approximate π^*
 - \rightarrow how to optimize the policy without the learning model

- Objective:
 - (1) bypass the estimation of learning model & (2) approximate π^*
 - \rightarrow how to optimize the policy without the learning model

- The principle of reinforcement learning:
 - learn in an interactive environment by trial and error
 - find a suitable action model (sequential actions) that would maximize the total cumulative reward (a long-term goal) of the agent

- The principle of reinforcement learning:
 - learn in an interactive environment by trial and error
 - find a suitable action model (sequential actions) that would maximize the total cumulative reward (a long-term goal) of the agent
- In this case:
 - Agent \rightarrow online learning platform
 - State \rightarrow knowledge profile $\alpha(t)$
 - Action \rightarrow selection of learning material
 - Environment \rightarrow learners
 - Reward \rightarrow the changes of knowledge profile

- Q-learning algorithm:
 - Determine action sequence with Q table

	Action 1	Action 2
State 1	-5	10

- Q-learning algorithm:
 - Determine action sequence with Q table

	Action 1	Action 2
State 1	0	0

16

17

- Q-learning algorithm:
 - Determine action sequence with Q table

	Action 1	Action 2
State 1	-5	0

State 1

18

- Q-learning algorithm:
 - Determine action sequence with Q table
 - The sum of the expected reward gained in the remaining training epochs

$$Q_t^*(\boldsymbol{\alpha}, d) = E\left(\sum_{s=t}^{T-1} R(s) | \boldsymbol{\alpha}, d, \pi^*\right)$$

• Maximize $Q_t^*(\alpha, d)$ to select the next learning material $d^* = \underset{d}{\operatorname{argmax}} Q_t^*(\alpha, d)$

19

- Q-learning algorithm:
 - Determine action sequence with Q table
 - The sum of the expected reward gained in the remaining training epochs

$$Q_t^*(\boldsymbol{\alpha}, d) = E\left(\sum_{s=t}^{T-1} R(s) | \boldsymbol{\alpha}, d, \pi^*\right)$$

- Maximize $Q_t^*(\alpha, d)$ to select the next learning material $d^* = \underset{d}{\operatorname{argmax}} Q_t^*(\alpha, d)$
- Example: two skills (K = 2) with two set of learning materials in two time epochs (T = 2)

α	t = 0		t = 1	
	d = 1	d = 2	d = 1	d = 2
(0, 0)	1.26	0.60	0.60	0.00
(1, 0)	0.70	0.91	0.00	0.70

- Q-learning algorithm:
 - Determine action sequence with Q table
 - The sum of the expected reward gained in the remaining training epochs

$$Q_t^*(\boldsymbol{\alpha}, d) = E\left(\sum_{s=t}^{T-1} R(s) | \boldsymbol{\alpha}, d, \pi^*\right)$$

- Maximize $Q_t^*(\alpha, d)$ to select the next learning material $d^* = \underset{d}{\operatorname{argmax}} Q_t^*(\alpha, d)$
- Example: two skills (K = 2) with two set of learning materials in two time epochs (T = 2)

	t = 0		t = 1		
α	d = 1	d = 2	d = 1	<i>d</i> = 2	
(0, 0)	1.26	0.60	0.60	0.00	$T \times 2^{\kappa} \times \mathcal{D} $
(1, 0)	0.70	0.91	0.00	0.70	So complex!

- Q-learning algorithm:
 - $Q_t^*(\alpha, d)$ is approximated by a linear model

$$Q_t(\widehat{\boldsymbol{\alpha}}, d, \boldsymbol{\beta}) = \sum_{l=1}^p \boldsymbol{\beta}_l^{(td)} f_l(\widehat{\boldsymbol{\alpha}})$$

finite dimensional vector functions summarizing features of $\hat{\alpha}$

 \rightarrow from $T \times 2^K \times |\mathcal{D}|$ to $T \times p \times |\mathcal{D}|$ ($p \ll 2^K$)

- Q-learning algorithm:
 - $Q_t^*(\alpha, d)$ is approximated by a linear model

$$Q_t(\widehat{\boldsymbol{\alpha}}, d, \boldsymbol{\beta}) = \sum_{l=1}^p \beta_l^{(td)} f_l(\widehat{\boldsymbol{\alpha}}) \quad \text{find}$$

finite dimensional vector functions summarizing features of $\widehat{\pmb{\alpha}}$

 \rightarrow from $T \times 2^K \times |\mathcal{D}|$ to $T \times p \times |\mathcal{D}|$ ($p \ll 2^K$)

• Example: a main effect linear model

$$Q_t(\widehat{\alpha}, d, \beta) = \beta_0^{(td)} + \sum_{k=1}^K \beta_k^{(td)} f_k(\widehat{\alpha})$$

the posterior probability of $\alpha_k(t) = 1$

Our problem becomes the estimation of β

- The estimation of β :
 - the balance between exploration (exploring new path) and

exploitation (following the current "best" path)

Take home message

- Adaptive Learning aims to provide tailored learning trajectory for every individual
- Three key components in personalized learning
 - Measurement model, learning model, and recommendation strategy
- Facilitating a solution with reinforcement Q-learning
 - Determine an optimal action sequence that maximizes the long-term reward through collecting feedbacks from the environment

School of Education & Information Studies

Thanks 감사합니다 Grazie 谢谢大家

Reporter: Yingshi Huang

Scan here to subscribe :)