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Introduction

* How to determine student growth?

This student is learning math

—

7
\\4 //

Responses 1 Responses 2 Responses 3

ability at time 1 ability at time 2 ability at time 3

* We want to model the changes in latent traits
from item response theory (IRT) model — single time point
to longitudinal IRT models (L-IRT) — multiple time points

He took four exams in his grade 3, 4, 5, and 6

Responses 4

l

ability at time 4
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* The family of longitudinal IRT

— measurement model
— the relationship of the latent traits over time



Introduction

* The family of longitudinal IRT

— measurement model

1. Unidimensional model: one latent trait (e.g., math ability)
2. Multidimensional model: multiple latent traits (e.g., math, reading, science)

3. Hierarchical model




Introduction

* The family of longitudinal IRT

— measurement model

3. Hierarchical model

— Content coverage shifts across times:
many domains only appear in limited grades

— Different growth patterns:
certain domain-level traits grow linearly, whereas others grow in a piecewise fashion



Introduction

* The family of longitudinal IRT

— the relationship of the latent traits over time

1. unstructured covariance matrix

2. latent growth curve (LGC) models

ability at time t
= intercept + slope*time effect + error

ability t1

ability _t2

ability t3

ability_t4

ability t1 ability t2 ability t3 ability t4
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Introduction

* The family of longitudinal IRT

— measurement model
— the relationship of the latent traits over time

* This paper:
introduce three models with the latent growth curve structure
(LGC is more interpretable & more complicated than unstructured covariance matrix)

1. Longitudinal unidimensional IRT
2. Longitudinal multidimensional IRT
3. Longitudinal higher-order IRT



Longitudinal IRT models

 Longitudinal unidimensional IRT (L-UIRT) model

— One time point:

1
B 1+ exp[—aj(ﬁi — bj)]

Yii1 || Yo1 || Y31 ltems




Longitudinal IRT models

 Longitudinal unidimensional IRT (L-UIRT) model

— One time point:

1
) )

1+ exp[—aj(ei — b] v v T ltems

— Multiple time points:

_at(at — pt
1+eXp[ aj(ei J)] Yii || Yo1 || Y31 Yio || Ya2 || Y32 Yis || Yas || Y33

Time 1 Time 2 Time 3



Longitudinal IRT models 10

* The relationship of the latent traits over time

Math ability @ @ @

ltems Yi1 Y5 Y34 Yio || Yoo || Y30 Yis || Yos || Y33

Time 1 Time 2 Time 3

Design matrix (T-by-p and T-by-q)
0, = XB + Zv, + d, 0; =1{6},..,0}, ...,0]} (T-by-1 vector)
Fixed effects Random effects 8; Residuals (T-by-1 vector)

(p) (9)



Longitudinal IRT models 11

* The relationship of the latent traits over time

Math ability @ @ @

ltems Yin || Yo1 || Y51 Yio || Y2 || Y32 Yiz || Yoz || Y33
Time 1 Time 2 Time 3
Design matrix (T-by-p and T-by-q) Example: Lo
B | | a simple linear growth model with a single
0; =XB +Zv; + o, person-specific intercept and slope (p =q=2) x-=-z- 1 l
Fixed effects Random effects ; y -
0 =mp + 7 X (t—1)+9; 1 T-1
(P) (Q) ’ :
Toi = Po + Voi
9; = {61, .., 0%, .., 67} (T-by-1 vector) T = P v
2
&; Residuals (T-by-1 vector) B = {Bo, B1} v = {Voi, V1) %, = [ v 0”02”1]
~multinormal(0, Z,) Ovgvy  Ovy




Longitudinal IRT models

* Three time points, one latent trait

Intercept and slope

Math ability

ltems




Longitudinal IRT models

* The scale of parameters: linking

Math ability
Yo1 Yoo

ltems Y11 Y54 Yia Y39 Yis

Yos

Y33

Time 1 Time 2 Time 3

— Different items may be used at different time points

r t ot 1t - : -
Pr(Yij = 1|6, a;, bj) | Low ability High ability m) Same result
Person ability  Item parameters + easy question  + hard question



Longitudinal IRT models

* The scale of parameters: linking

Math ability
Yo1 Yoo

ltems Y11 Y54 Yia Y39 Yis

Yos

Y33

Time 1 Time 2 Time 3

— Different items may be used at different time points

Pr(Yl; = 16}, a;, b}) | Low ability High ability m) Same result

Person ability  Item parameters + easyguestion  + hard question
Anchor on the same items

Items at time 1 Common
items ltems at time 2




Longitudinal IRT models

* The scale of parameters: identifiability

Math ability

ltems

Y11

Yo

Y31

Yis

Yoo

Y39

Yis

Yos

Y33

Time 1

Time 2

Time 3

— Within a specific time point: item part and person part still mix together

t tot ot
Pr(Ylj = 1|6i,aj,bj)

1

1 + exp [—a} (Gf — bj)]

m) Impose some constraints:

fix the scale of one part at one time point (person ability at time 1)

1. mean [= 0]

2. variance [= constant]




Longitudinal IRT models

* The scale of parameters: identifiability

Math ability

ltems

Y11

Yo

Y31

Yis

Yoo

Y39

Yis

Yos

Y33

Time 1

Time 2

Time 3

— Within a specific time point: item part and person part still mix together

t tot ot
Pr(Ylj = 1|9i,aj,bj)

1

1 + exp [—a} (Gf — bj)]

m) Impose some constraints:

fix the scale of one part at one time point (person ability at time 1)

1. mean [= 0]

2. variance [= constant]

All of the residuals ;
having mean 0

OEZTEOZ'—FTEUX(Z‘—I)—FSE

Toi = By + Vo

mi = By + Vi

E(8;) =



Longitudinal IRT models

* The scale of parameters: identifiability

Math ability
Yo1 Yoo

ltems Y11 Y54 Yia Y39 Yis

Yos

Y33

Time 1 Time 2 Time 3

— Within a specific time point: item part and person part still mix together
1

1 + exp [—a} (Gf — bj)]

m) Impose some constraints:

fix the scale of one part at one time point (person ability at time 1) G : T — 1)
1. mean [= 0]

2. variance [= constant]

t tot ot
Pr(Ylj = 1|6i,aj,bj) =

mean variance



Longitudinal IRT models

* The scale of parameters: identifiability

Math ability
Yo1 Yoo

ltems Y11 Y54 Yia Y39 Yis

Yos

Y33

Time 1 Time 2 Time 3

— Within a specific time point: item part and person part still mix together
1

1 + exp [—a} (Gf — bj)]

t tot ot
Pr(Ylj = 1|6i,aj,bj) =

» If the anchor items have been pre-calibrated (i.e., we have a scale of item parameters)
Then only the constraint of expected §; is needed E(3) =0



Longitudinal IRT models

 Longitudinal multidimensional IRT (L-MIRT) model

algebra geometry
Yll Yzl 1/31 Ycll Y:’ﬁl Yﬁl Y12 Y22 1/32 Y42 1/SQ YGZ Yl 3 Y23 YE%:% Y43 YHB Y63
Time 1 Time 2 Time 3

Pr(Y =100, ) = I p (y_r:mf., r.,bt.) _ !
r( i = 119, a; J) 1+exp[_a}.(e§_b})] ) (V= 116045 1+exp[—(aj‘i)T9§+b}]

More than one ability
were involved
(K dimensions)




Longitudinal IRT models

* The relationship of the latent traits over time

algebra geometry
Yl 31 Ycl YG Yl 32 Y4 Yﬁ Yl: 3 3 Ycl. 63
Time 1 Time 2 Time 3

Gi:XB—I—Zvi—|—8i

0,=(0,...,0, ...,0/,...,00.)  KT-by-1 vector

- J
Y

K dimensions




Longitudinal IRT models

* The relationship of the latent traits over time

algebra geometry
Yll Y21 Y31 Y41 }/51 Yﬁl Y12 Y22 Y32 Y42 1/52 YGZ Y13 Y23 1/33 Y43 Y53 YGB
Time 1 Time 2 Time 3

9,- :XB—FZV,—FSZ
Kp x 1 Kq x1
~ multinormal(0, ¥,,)) where X, is a full matrix
K intercepts

K slopes for the first fixed covariate,
K slopes for the second fixed covariate

21



Longitudinal IRT models

* The relationship of the latent traits over time

algebra geometry
Yll Yzl 1/31 Ycll Y:’ﬁl Yﬁl Y12 Y22 1/32 Y42 1/SQ YGZ Yl 3 Y23 YE%:% Y43 YHB Y63
Time 1 Time 2 Time 3

9,- :XB+ZVZ—|—81

Example: a simple linear trajectory without any additional covariates
0 = Mok + Tie X (£ — 1) + 3,
Tiok = Box + Viok

itk = Pig + Vitk

22



Longitudinal IRT models

* Three time points, two dimensions, three items per domain

(between multidimensionality)

intercept =

Ty

Y]. 1

Y2 1

K? 1

Y4 1

Y51

Yﬁl

Yl 3

Y23

}/33

O = Mok + Tk % (£ — 1) + 8
Tiok = Box + Viok

itk = Pig + Vitk

23



Longitudinal IRT models

* The scale of parameters: linking

algebra geometry
Yl 31 Ycl YG Yl 32 Y4 Yﬁ Yl: 3 3 Ycl. 63
Time 1 Time 2 Time 3
Pr(¥; = 1/6},a!, ) = 1

I + exp [—(a;.)Teg + b}]

anchor items must still be embedded and load on every domain
— link the scale of 6, acrosstime forall k =1, ..., K



Longitudinal IRT models

* The scale of parameters: identifiability

algebra geometry

Yl Y‘% 1 Yél 1 Y:’i 1 YG 1

A A

Y12 Y22

3 YHB

1/3 2 Yél 2 Yﬁ 2 Yﬁ 2 Yl : YE% 3 Ydl : Yﬁ 3

Time 1

Time 2 Time 3

— If all item parameters are unknown: all constraints are required
— If anchor items are precalibrated: only constraint 1 is required

Tiok = Pox + Viok

Ttk = Bix + Vilk

1.E(8f)=0forallt=1,..,Tand k =1, .., K
2. gy, = Bor = 0 forall k

(to fix the mean of 8%, at time 1 for all k)
3. Gfszilk = ¢, forall k

(to fix the variance of 6}, at time 1 for all k)




Longitudinal IRT models

 Longitudinal higher-order IRT (L-HO-IRT) model

overall latent trait
Second-order e (e.g., math)
A Ay
First-order @ @

domain latent trait domain latent trait
(e.g., algebra) (e.g., geometry)

) 0 = L& + e

1
P Y't' — 1 _t’ t,:’ bt =
(Y5 = 1|¢f, af, b] 1+ exp[—al (¢f — bY)]

26



Longitudinal IRT models

 Longitudinal higher-order IRT (L-HO-IRT) model

overall latent trait
Second-order e (e.g., math)
A Ay
First-order @ @

domain latent trait domain latent trait
(e.g., algebra) (e.g., geometry)

) 0 = L& + e

The L-HO-IRT model is nested within the L-MIRT model:

1. 6, and 68, can be uncorrelated in L-MIRT
2. L-HO-IRT restrict the domain-level correlation to be non-zero

27



Longitudinal IRT models

* The relationship of the latent traits over time

Second-order
O = MiS; + €ix e

A Ay
0,‘ = )\(XB -+ ZV,‘ -+ 8,) —+ €;

First-order @ e

Example: a simple linear trajectory without any additional covariates

eik — ?‘k‘:i + Egk

= Me(mo + 1y x (£ — 1) +8) + €, the loading remains the same over time

longitudinal measurement invariance
= ?\,kTE()i + ApTy; X (t — 1) + (kkﬁf + E;k) (long )



Longitudinal IRT models

* Three time points, two domain-specific abilities, three items for each domain

a.

X

%

A1
Y22

A2
2
Eo'ag O¢
}/5 1 2 }/:'32

Al
2
E; 1 \
1 || Yau Ys1 Y,

[ Y31 Y

Yy

A2
¥ ! (:
2 Y:'SQ

2
€2
YGQ

e;k — ?\'kéf + elt'k

29



Longitudinal IRT models

* The scale of parameters
0% = M + €
& =My + 1y X (t—1) + 6
mo; = Po + Voi

Ty = Py + vy

—

E(8f)=0forallt=1,..,T
2. :uT[()i = ﬁO =0

(to fix the mean of &/ at time 1)
3.E(ef,)=0forallt=1,..,Tand k =1,.., K
4. Fix the residual variances at time 1: af_lk = c}
5. Set one of the loading 4, for some k to a constant
(as a reference indicator)

— If all item parameters are unknown: all constraints are required
— If anchor items are precalibrated: only constraint 1,3,5 are required




Model Estimation

 Can be viewed as a multilevel LGC model with the lowest level

represented by categorical indicators

—)

integrate the likelihood over the
distribution of random effects

1. Marginal likelihood estimation

ANALYSIS: TYPE = GENERAL;
ESTIMATOR = MLR;
LINK = LOGIT;
INTEGRATION = MONTECARLO;

2. Markov chain Monte Carlo method

ANALYSIS: ESTIMATOR = BAYES;
CHAINS = 1;
FBITER = 50000;
POINT = MEAN;




A Real Data Example

» Data
— math assessments (2009 — 2012): 327 students (grades 3 - 6)

- five-dimensional, simple structure test with precalibrated item parameters

- 2009: 57 items (with 23, 9, 7, 11, and 7 items, respectively, measuring each dimension)
— 2010-2012: 52 items (with 23, 9, 7, 11, and 7 items, respectively, measuring each dimension)

— precalibrated anchor items were embedded within each of the five dimensions across all 4 years

 Model

— assume to have only random intercepts and slopes
— follow two-parameters IRT model

 Estimation
- MCMC with 30,000 iterations and half of them are discarded as burn-in



Structural Model Parameter Estimates for Three Different Models 3 3

Res u I ts Random Effects 0 — intercept

2 1 — slope
Fixed Effects ( Oru )
Models NP (Bo By) Onrymy Ox Others
081 5 . :
L-UIRT 275 (—.653 .472) ol =(.048 063 .046 .015)
—.008 .005 '
—.652  .509 145 014 051 .087 .052 .019
—.633 428 255 .039 063 .066 .025 .037
L-MIRT 351 —.421 356 267 .038 o} =|.032 .048 .009 .029
—.659 444 169 042 035 .055 .042 .031
—.795 .524 120 .017 054 .010 .031 .013
l*
768
L-HO-IRT 299 (—-.702 .514) A= .734
—.009 .007
882
935
o3 =(.052 .071 .061 .015)

028 .031 .016 .017
21 091 088 .044
=1 .018 .031 .013 .01l
059 .020 .018 .034
059 012 013 .008

Rl
|

Note. NP denotes the number of free parameters in each model. The covariances between random
intercepts and random slopes from the L-MIRT model are omitted to save space because they are
between —.01 and .01. *“*” denotes a fixed constant. IRT = item response theory; L-UIRT =
longitudinal unidimensional IRT; L-MIRT = longitudinal multidimensional IRT; L-HO-IRT =
longitudinal higher order IRT.
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Res u I ts Random Effects 0 — intercept

2 1 — slope
Fixed Effects ( Oru )
Models NP (Bo By) Onrymy Ox Others
081 5 . :
L-UIRT 275 (—.653 .472) ol =(.048 063 .046 .015)
—.008 .005 '
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Note. NP denotes the number of free parameters in each model. The covariances between random
intercepts and random slopes from the L-MIRT model are omitted to save space because they are
between —.01 and .01. *“*” denotes a fixed constant. IRT = item response theory; L-UIRT =
longitudinal unidimensional IRT; L-MIRT = longitudinal multidimensional IRT; L-HO-IRT =
longitudinal higher order IRT.



Structural Model Parameter Estimates for Three Different Models 3 5

Res u I ts Random Effects 0 — intercept

2 1 — slope
Fixed Effects ( Oru )
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Note. NP denotes the number of free parameters in each model. The covariances between random
intercepts and random slopes from the L-MIRT model are omitted to save space because they are
between —.01 and .01. *“*” denotes a fixed constant. IRT = item response theory; L-UIRT =
longitudinal unidimensional IRT; L-MIRT = longitudinal multidimensional IRT; L-HO-IRT =
longitudinal higher order IRT.



Results 36

estimate

unidimensional
1 2 3 4 1 2 3 4
time

FIGURE 4. A4 spaghetti plot, illustrating the linear trend of ¢ (overall-level ability) on
math between Grades 3 and 6 for N = 327 students. The left panel is obtained from the
longitudinal higher order item response theory model, and the right panel is from
the longitudinal unidimensional item response theory model. The bolded, slanted line in
the center of the spaghetti depicts the estimated fixed effect of time.



Results 37

=)
higher-order

estimate
o

<
lower-order

33 94 e5

time

FIGURE 5. 4 spaghetti plot, illustrating the linear trend of 0 (domain-level ability) on math between Grades 3 and 6 for N = 327
students. The upper panels are obtained from the longitudinal higher order item response theory model, and the lower panels are from
the longitudinal multidimensional item response theory model. The bolded, slanted line in the center of the spaghefti depicts the
estimated fixed effect of time.



Conclusion

 the L-UIRT model is the simplest
 the L-MIRT model describes change in multiple, correlated latent traits

 the L-HO-IRT model (1) simultaneously models the growth trajectories of
both overall- and domain-specific abilities and (2) allows for a shift in domain
coverage over time

» Future studies can consider how to model nonlinear growth patterns

38
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